Interaction And Mixing Effects In Two And One Dimensional Hole Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Interaction And Mixing Effects In Two And One Dimensional Hole Systems PDF full book. Access full book title Interaction And Mixing Effects In Two And One Dimensional Hole Systems.

Interaction and Mixing Effects in Two and One Dimensional Hole Systems

Interaction and Mixing Effects in Two and One Dimensional Hole Systems
Author: Ahrash Daneshvar
Publisher:
Total Pages:
Release: 2008
Genre:
ISBN:

Download Interaction and Mixing Effects in Two and One Dimensional Hole Systems Book in PDF, ePub and Kindle

This thesis describes electrical measurements performed on low dimensional p-type devices, fabricated from GaAs/AlGaAs heterostructures. The Coulomb interaction between holes is similar to that between electrons. However, the kinetic energy is suppressed, which makes interaction effects particularly important. Holes may also be used to study band structure effects which arise from spin-orbit coupling in the valence band. The effects of Coulomb interactions in low dimensional electron systems are currently being studied extensively. Experiments presented in this thesis indicate the possible importance of Coulomb exchange interactions in both one and two dimensional hole systems (1DHSs,2DHSs). Tilted magnetic field studies of 2DHSs in the quantum Hall regime indicate that Landau levels at even filling factors will not cross. For high filling factor, this is attributed to a spin-orbit mixing effect which arises from the low symmetry ofthe system. At lower filling factor, activation-energy measurements verify that the energy gaps decrease and then increase as the field is tilted. However, the energy gap versus field dependences do not exhibit the curvature that might be expected from a perturbative anticrossing. It is speculated that the origin of this effect is a phase transition driven by the exchange interaction. Balanced arguments contrasting the relative strengths of the mixing and interactions theories are provided. The second part of this thesis describes a new method for the fabrication ofballistic 1DHSs, which exhibit clear conductance quantization. The quantization changes from even to odd multiples of e2/h as a function of the magnetic field in the plane of the heterostructure, as 'spin splitting' causes the 1D subbands to cross. Measurements of the 1D subband energy spacings are used together with the magnetic fields at which the crossings occur to calculate the in-plane g factors of the 1D subbands. These are found to increase as the number of occupied 1D subbands decreases. This enhancement of the g factor is attributed to exchange interactions; possible mixing explanations are also discussed. At higher magnetic fields, the pattern of quantization features shows that the subbands have crossed many times, and that the 1DHS can be strongly magnetized.


Interacting Two-Dimensional Electron and Hole Systems in Perpendicular Magnetic Fields

Interacting Two-Dimensional Electron and Hole Systems in Perpendicular Magnetic Fields
Author: Meng Ma
Publisher:
Total Pages: 0
Release: 2021
Genre:
ISBN:

Download Interacting Two-Dimensional Electron and Hole Systems in Perpendicular Magnetic Fields Book in PDF, ePub and Kindle

Electron and hole systems confined in two dimensions exhibit a plethora of exotic quantum phases under perpendicular magnetic field at sufficiently low temperature. In this thesis, we explore several of these quantum phases in state-of-the-art high-quality InAs and GaAs quantum wells and study their formation, phase diagram, and geometric resonance behavior under a one-dimensional periodic magnetic modulation.The two-dimensional (2D) electron system in an InAs quantum well has emerged as a prime candidate for hosting exotic quasi-particles with non-abelian statistics such as Majorana fermions and parafermions. To attain its full promise, however, the electron system has to be clean enough to exhibit electron-electron interaction phenomena. In the first part of the thesis, we present the observation of the fractional quantum Hall effect in a very low disorder InAs quantum well. At sufficiently low temperature and very high perpendicular magnetic field, a deep minimum in the longitudinal resistance, accompanied by a nearly quantized Hall plateau at Landau level filling factor nu=4/3 was observed.A sufficiently large perpendicular magnetic field quenches the kinetic (Fermi) energy of an interacting 2D system of fermions, making them susceptible to the formation of a Wigner solid (WS) phase in which the charged carriers organize themselves in a periodic array to minimize their Coulomb repulsion energy. In low-disorder 2D electron systems confined to modulation-doped GaAs heterostructures, signatures of a magnetic-field-induced WS appear at low temperatures and very small Landau level filling factors (nu~1/5). In dilute GaAs 2D hole systems, on the other hand, thanks to the larger hole effective mass and the ensuing Landau level mixing, the WS forms at relatively higher fillings (nu~1/3). In the second part of the thesis, we present our measurements of the fundamental temperature vs. filling phase diagram for the 2D holes' WS-liquid thermal melting. Moreover, via changing the 2D hole density, we also probe their Landau level mixing vs. filling WS-liquid quantum melting phase diagram. We find our data to be in good agreement with the results of very recent calculations, although intriguing subtleties remain.A high-quality 2D electron system under a small perpendicular magnetic field exhibits ballistic cyclotron motion. When the size of the cyclotron orbit is commensurate with an external one-dimensional (1D) density modulation, a series of longitudinal resistance minima are observed as a result of this geometric resonance condition. In a GaAs 2D electron system, such 1D density modulation can be achieved through the piezoelectric effect along the [110] and [-110] crystallographic directions. In the third part of this thesis, we discuss a technique that imposes a 1D magnetic modulation to the GaAs 2D electron system in the [100] and [010] crystallographic directions where the piezoelectric effect essentially zero. This technique can be implemented to study the geometric resonance of other 2D systems such as the AlAs 2D electron system, where the major axes of the carrier pockets are along the directions. By extending this technique to higher perpendicular magnetic fields, one can also add an additional tool to probe the physics of the composite fermion systems.


Electronic States and Optical Transitions in Semiconductor Heterostructures

Electronic States and Optical Transitions in Semiconductor Heterostructures
Author: Fedor T. Vasko
Publisher: Springer Science & Business Media
Total Pages: 402
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1461205352

Download Electronic States and Optical Transitions in Semiconductor Heterostructures Book in PDF, ePub and Kindle

The theoretical basis and the relevant experimental knowledge underlying our present understanding of the electrical and optical properties of semiconductor heterostructures. Although such structures have been known since the 1940s, it was only in the 1980s that they moved to the forefront of research. The resulting structures have remarkable properties not shared by bulk materials. The text begins with a description of the electronic properties of various types of heterostructures, including discussions of complex band-structure effects, localised states, tunnelling phenomena, and excitonic states. The focus of the remainder of the book is on optical properties, including intraband absorption, luminescence and recombination, Raman scattering, subband optical transitions, nonlinear effects, and ultrafast optical phenomena. The concluding chapter presents an overview of some of the applications that make use of the physics discussed. Appendices provide background information on band structure theory, kinetic theory, electromagnetic modes, and Coulomb effects.


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports
Author:
Publisher:
Total Pages: 652
Release: 1995
Genre: Aeronautics
ISBN:

Download Scientific and Technical Aerospace Reports Book in PDF, ePub and Kindle

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.


Physics Briefs

Physics Briefs
Author:
Publisher:
Total Pages: 1224
Release: 1994
Genre: Physics
ISBN:

Download Physics Briefs Book in PDF, ePub and Kindle


Interacting Electrons and Quantum Magnetism

Interacting Electrons and Quantum Magnetism
Author: Assa Auerbach
Publisher: Springer Science & Business Media
Total Pages: 249
Release: 2012-12-06
Genre: Science
ISBN: 1461208696

Download Interacting Electrons and Quantum Magnetism Book in PDF, ePub and Kindle

In the excitement and rapid pace of developments, writing pedagogical texts has low priority for most researchers. However, in transforming my lecture l notes into this book, I found a personal benefit: the organization of what I understand in a (hopefully simple) logical sequence. Very little in this text is my original contribution. Most of the knowledge was collected from the research literature. Some was acquired by conversations with colleagues; a kind of physics oral tradition passed between disciples of a similar faith. For many years, diagramatic perturbation theory has been the major theoretical tool for treating interactions in metals, semiconductors, itiner ant magnets, and superconductors. It is in essence a weak coupling expan sion about free quasiparticles. Many experimental discoveries during the last decade, including heavy fermions, fractional quantum Hall effect, high temperature superconductivity, and quantum spin chains, are not readily accessible from the weak coupling point of view. Therefore, recent years have seen vigorous development of alternative, nonperturbative tools for handling strong electron-electron interactions. I concentrate on two basic paradigms of strongly interacting (or con strained) quantum systems: the Hubbard model and the Heisenberg model. These models are vehicles for fundamental concepts, such as effective Ha miltonians, variational ground states, spontaneous symmetry breaking, and quantum disorder. In addition, they are used as test grounds for various nonperturbative approximation schemes that have found applications in diverse areas of theoretical physics.


Comprehensive Semiconductor Science and Technology

Comprehensive Semiconductor Science and Technology
Author:
Publisher: Newnes
Total Pages: 3572
Release: 2011-01-28
Genre: Science
ISBN: 0080932282

Download Comprehensive Semiconductor Science and Technology Book in PDF, ePub and Kindle

Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology, Six Volume Set captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts


Nuclear Science Abstracts

Nuclear Science Abstracts
Author:
Publisher:
Total Pages: 764
Release: 1974
Genre: Nuclear energy
ISBN:

Download Nuclear Science Abstracts Book in PDF, ePub and Kindle


Physics of Quantum Rings

Physics of Quantum Rings
Author: Vladimir M. Fomin
Publisher: Springer Science & Business Media
Total Pages: 498
Release: 2013-08-29
Genre: Science
ISBN: 3642391974

Download Physics of Quantum Rings Book in PDF, ePub and Kindle

This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.