Improving Warm Rainfall Detection And Rainfall Estimation Of A Multiple Satellite Based Rainfall Retrieval Algorithm PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Improving Warm Rainfall Detection And Rainfall Estimation Of A Multiple Satellite Based Rainfall Retrieval Algorithm PDF full book. Access full book title Improving Warm Rainfall Detection And Rainfall Estimation Of A Multiple Satellite Based Rainfall Retrieval Algorithm.

Improving Warm Rainfall Detection and Rainfall Estimation of a Multiple Satellite-based Rainfall Retrieval Algorithm

Improving Warm Rainfall Detection and Rainfall Estimation of a Multiple Satellite-based Rainfall Retrieval Algorithm
Author: Negar Karbalaee
Publisher:
Total Pages: 114
Release: 2017
Genre:
ISBN: 9780355260717

Download Improving Warm Rainfall Detection and Rainfall Estimation of a Multiple Satellite-based Rainfall Retrieval Algorithm Book in PDF, ePub and Kindle

Precipitation as an essential component of the hydrologic cycle has a great importance to be measured accurately due to various applications such as hydrologic modeling, extreme weather analysis, and water resources management. Among different methods, meteorological satellites are one of the instruments that are widely used for precipitation estimation in fine spatial and temporal resolution. Precipitation Estimation from Remotely Sensed Imagery using Artificial Neural Network Cloud Classification System (PERSIANN-CCS) uses infrared (IR) data from Geostationary Earth Orbit (GEO) satellites to retrieve precipitation based on relationship between clout top temperature (Tb) and rainfall rate (RR) using a neural network technique. The complexity of Tb-RR relationship for estimating precipitation causes uncertainty in PERSIANN-CCS rainfall product. This research is focused on improving PERSIANN-CCS rainfall retrieval using several approaches:1) Bias adjustment of PERSIANN-CCS rainfall estimates using PMW satellite rainfall data: Using multi satellite data can enhance the quality of rainfall estimation considerably; in this research we have combined the rainfall data from PERSIANN-CCS and PMW rainfall to enhance the bias of PERSIANN-CCS precipitation estimates. The results showed improvement of rainfall estimation during summer and winter time.2) Increasing the rainfall detection by including warm clouds rainfall: PERSIANN-CCS currently cannot detect rainfall from clouds with temperature warmer than 253 K. This study explores the impacts of increasing the temperature threshold on precipitation estimation. The results show that increasing the threshold level can improve the PERSIANN-CCS rainfall detection.3) Generating a probabilistic framework for precipitation retrieval: The current version of PERSIANN-CCS retrieves precipitation based on the exponential function fitted to Tb-RR. The major assumption behind this relationship is that the heavier rainfalls are associated with colder clouds which cause underestimation of warmer clouds and overestimation of colder clouds rainfall. The probabilistic approach uses the corresponding sample relationship between cloud temperature and rainfall rate. The model is evaluated during a full summer season which showed improvement in both detection and estimation of rainfall in compare with the current PERSIANN-CCS algorithm.


Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery

Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery
Author: Nasrin Nasrollahi
Publisher: Springer
Total Pages: 83
Release: 2014-11-07
Genre: Science
ISBN: 3319120816

Download Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery Book in PDF, ePub and Kindle

This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space. Using satellite data to estimate precipitation from space overcomes the limitation of ground-based observations in terms of availability over remote areas and oceans as well as spatial coverage. However, the accuracy of satellite-based estimates still need to be improved. The approach introduced in this thesis takes advantage of the recent NASA satellites in observing clouds and precipitation. In addition, machine-learning techniques are also employed to make the best use of remotely-sensed "big data." The results provide a significant improvement in detecting non-precipitating areas and reducing false identification of precipitation.


Satellite Rainfall Applications for Surface Hydrology

Satellite Rainfall Applications for Surface Hydrology
Author: Mekonnen Gebremichael
Publisher: Springer Science & Business Media
Total Pages: 327
Release: 2009-12-02
Genre: Science
ISBN: 904812915X

Download Satellite Rainfall Applications for Surface Hydrology Book in PDF, ePub and Kindle

With contributions from a panel of researchers from a wide range of fields, the chapters of this book focus on evaluating the potential, utility and application of high resolution satellite precipitation products in relation to surface hydrology.


Improved Global High Resolution Precipitation Estimation Using Multi-satellite Multi-spectral Information

Improved Global High Resolution Precipitation Estimation Using Multi-satellite Multi-spectral Information
Author: Ali Behrangi
Publisher:
Total Pages: 204
Release: 2009
Genre:
ISBN: 9781109513943

Download Improved Global High Resolution Precipitation Estimation Using Multi-satellite Multi-spectral Information Book in PDF, ePub and Kindle

In respond to the community demands, combining microwave (MW) and infrared (IR) estimates of precipitation has been an active area of research since past two decades. The anticipated launching of NASA's Global Precipitation Measurement (GPM) mission and the increasing number of spectral bands in recently launched geostationary platforms will provide greater opportunities for investigating new approaches to combine multi-source information towards improved global high resolution precipitation retrievals. After years of the communities' efforts the limitations of the existing techniques are: (1) Drawbacks of IR-only techniques to capture warm rainfall and screen out no-rain thin cirrus clouds; (2) Grid-box- only dependency of many algorithms with not much effort to capture the cloud textures whether in local or cloud patch scale; (3) Assumption of indirect relationship between rain rate and cloud-top temperature that force high intensity precipitation to any cold cloud; (4) Neglecting the dynamics and evolution of cloud in time; (5) Inconsistent combination of MW and IR-based precipitation estimations due to the combination strategies and as a result of above described shortcomings. This PhD dissertation attempts to improve the combination of data from Geostationary Earth Orbit (GEO) and Low-Earth Orbit (LEO) satellites in manners that will allow consistent high resolution integration of the more accurate precipitation estimates, xxii directly observed through LEO's PMW sensors, into the short-term cloud evolution process, which can be inferred from GEO images. A set of novel approaches are introduced to cope with the listed limitations and is consist of the following four consecutive components: (1) starting with the GEO part and by using an artificial-neural network based method it is demonstrated that inclusion of multi-spectral data can ameliorate existing problems associated with IR-only precipitating retrievals; (2) through development of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network - Multi-Spectral Analysis (PERSIANN-MSA) the effectiveness of using multi-spectral data for precipitation estimation are examined. In comparison to the use of a single thermal infrared channel, using multi-spectral data has a potential to significantly improve rain detection and estimation skills; (3) a method proposed to integrate the previously developed cloud classification system (PERSIANN CCS) with PERSIANN-MSA. Through the integration, PERSIANN-MSA benefits from both cloud-patch classification capability as well as multi-spectral information to culminate the GEO-based precipitation estimation techniques; (4) finally, a new combination technique that incorporates multi-sensor information is developed. The technique is called REFAME, short for Rain Estimation using Forward Adjusted advection of Microwave Estimates. REFAME allows more consistent integration of MW VIS/IR information through hybrid advection and adjustment of MW precipitation rate along cloud motion streamlines obtained from a 2D cloud tracking algorithm using successive GEO/IR images. Evaluated over a range of spatial and temporal scales it is demonstrated that REFAME is a robust technique for real-time high resolution precipitation estimation using multi-satellite information.


Measuring Precipitation from Space

Measuring Precipitation from Space
Author: V. Levizzani
Publisher: Springer Science & Business Media
Total Pages: 738
Release: 2007-05-11
Genre: Science
ISBN: 1402058357

Download Measuring Precipitation from Space Book in PDF, ePub and Kindle

No other book can offer such a powerful tool to understand the basics of remote sensing for precipitation, to make use of existing products and to have a glimpse of the near future missions and instruments. This book features state-of-the-art rainfall estimation algorithms, validation strategies, and precipitation modeling. More than 20 years after the last book on the subject the worldwide precipitation community has produced a comprehensive overview of its activities, achievements, ongoing research and future plans.


Remote Sensing of Precipitation

Remote Sensing of Precipitation
Author: Silas Michaelides
Publisher: MDPI
Total Pages: 318
Release: 2019-07-23
Genre: Science
ISBN: 3039212877

Download Remote Sensing of Precipitation Book in PDF, ePub and Kindle

Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne.


Remote Sensing of Clouds and Precipitation

Remote Sensing of Clouds and Precipitation
Author: Constantin Andronache
Publisher: Springer
Total Pages: 288
Release: 2018-02-21
Genre: Technology & Engineering
ISBN: 3319725831

Download Remote Sensing of Clouds and Precipitation Book in PDF, ePub and Kindle

This book presents current applications of remote sensing techniques for clouds and precipitation for the benefit of students, educators, and scientists. It covers ground-based systems such as weather radars and spaceborne instruments on satellites. Measurements and modeling of precipitation are at the core of weather forecasting, and long-term observations of the cloud system are vital to improving atmospheric models and climate projections. The first section of the book focuses on the use of ground-based weather radars to observe and measure precipitation and to detect and forecast storms, thunderstorms, and tornadoes. It also discusses the observation of clouds using ground-based millimeter radar. The second part of the book concentrates on spaceborne remote sensing of clouds and precipitation. It includes cases from the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission, using satellite radars to observe precipitation systems. Then, the focus is on global cloud observations from the ClaudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), including a perspective on the Earth Clouds, Aerosols, and Radiation Explorer (EarthCARE) satellite. It also addresses global atmospheric water vapor profiling for clear and cloudy conditions using microwave observations. The final part of this volume provides a perspective into advances in cloud modeling using remote sensing observations.


Remote Sensing of the Terrestrial Water Cycle

Remote Sensing of the Terrestrial Water Cycle
Author: Venkataraman Lakshmi
Publisher: John Wiley & Sons
Total Pages: 572
Release: 2014-10-31
Genre: Science
ISBN: 1118872266

Download Remote Sensing of the Terrestrial Water Cycle Book in PDF, ePub and Kindle

Remote Sensing of the Terrestrial Water Cycle is an outcome of the AGU Chapman Conference held in February 2012. This is a comprehensive volume that examines the use of available remote sensing satellite data as well as data from future missions that can be used to expand our knowledge in quantifying the spatial and temporal variations in the terrestrial water cycle. Volume highlights include: An in-depth discussion of the global water cycle Approaches to various problems in climate, weather, hydrology, and agriculture Applications of satellite remote sensing in measuring precipitation, surface water, snow, soil moisture, groundwater, modeling, and data assimilation A description of the use of satellite data for accurately estimating and monitoring the components of the hydrological cycle Discussion of the measurement of multiple geophysical variables and properties over different landscapes on a temporal and a regional scale


Satellite Precipitation Measurement

Satellite Precipitation Measurement
Author: Vincenzo Levizzani
Publisher: Springer Nature
Total Pages: 797
Release: 2020-04-14
Genre: Science
ISBN: 3030357988

Download Satellite Precipitation Measurement Book in PDF, ePub and Kindle

This book offers a complete overview of the measurement of precipitation from space, which has made considerable advancements during the last two decades. This is mainly due to the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM) mission, CloudSat and a carefully maintained constellation of satellites hosting passive microwave sensors. The book revisits a previous book, Measuring Precipitation from Space, edited by V. Levizzani, P. Bauer and F. J. Turk, published with Springer in 2007. The current content has been completely renewed to incorporate the advancements of science and technology in the field since then. This book provides unique contributions from field experts and from the International Precipitation Working Group (IPWG). The book will be of interest to meteorologists, hydrologists, climatologists, water management authorities, students at various levels and many other parties interested in making use of satellite precipitation data sets.


Polarimetric Doppler Weather Radar

Polarimetric Doppler Weather Radar
Author: V. N. Bringi
Publisher: Cambridge University Press
Total Pages: 666
Release: 2001-08-30
Genre: Science
ISBN: 9780521623841

Download Polarimetric Doppler Weather Radar Book in PDF, ePub and Kindle

This 2001 book provides a detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems. The design features and operation of practical radar systems are highlighted throughout the book in order to illustrate important theoretical foundations. The authors begin by discussing background topics such as electromagnetic scattering, polarization, and wave propagation. They then deal in detail with the engineering aspects of pulsed Doppler polarimetric radar, including the relevant signal theory, spectral estimation techniques, and noise considerations. They close by examining a range of key applications in meteorology and remote sensing. The book will be of great use to graduate students of electrical engineering and atmospheric science as well as to practitioners involved in the applications of polarimetric radar systems.