Implantable Neural Recording Front Ends For Closed Loop Neuromodulation Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Implantable Neural Recording Front Ends For Closed Loop Neuromodulation Systems PDF full book. Access full book title Implantable Neural Recording Front Ends For Closed Loop Neuromodulation Systems.

Implantable Neural Recording Front-Ends for Closed-Loop Neuromodulation Systems

Implantable Neural Recording Front-Ends for Closed-Loop Neuromodulation Systems
Author: Hariprasad Chandrakumar
Publisher:
Total Pages: 182
Release: 2018
Genre:
ISBN:

Download Implantable Neural Recording Front-Ends for Closed-Loop Neuromodulation Systems Book in PDF, ePub and Kindle

The goal of neuromodulation is to alter neural activity through targeted delivery of a stimulus to specific sites in the body. A prominent example of neuromodulation is deep brain stimulation (DBS), which has proved effective in mitigating the effects of certain neurological conditions. However, existing neuromodulation treatments lack real-time feedback (simultaneous sensing) to adapt stimulation parameters in response to brain dynamics. Hence, neuroscientists and clinicians aim to perform closed-loop neuromodulation, where stimulation can be optimally controlled in real time for better treatment outcomes. In recent years, the community has emphasized closed-loop neuromodulation as a highly desirable tool for administering therapy in patients suffering from drug-resistant neurological ailments. A miniaturized autonomous implant would be instrumental in ensuring that neuromodulation achieves its full potential. A key requirement for any closed-loop neuromodulation system is the ability to record neural signals while concurrently performing stimulation. However, neural stimulation generates large differential and common-mode artifacts at the recording sites, which easily saturate existing implantable recording front-ends due to their limited linear input range. To observe the neural response during stimulation, the front-end must faithfully digitize neural signals in the presence of large stimulation artifacts. The front-end must also satisfy strict constraints on power consumption, noise and input impedance, while achieving a small form-factor. State-of-the-art neural recording front-ends do not meet these requirements. This work presents a recording front-end that can digitize neural signals in the presence of 200mVpp differential artifacts and 700mVpp common-mode artifacts. The front-end consists of a chopper amplifier and a 15.2b-ENOB continuous-time delta-sigma ADC. In the design of the chopper amplifier, new techniques have been proposed that introduce immunity to common-mode interference, increase the DC input impedance (Zin) of the chopper amplifier to 1.5G , and enable the realization of large resistances (90G ) on-chip in a small area for filtering electrode offsets. In the design of the delta-sigma ADC, a modified loop-filter is used along with new linearization techniques to significantly reduce power consumption in the ADC. These techniques enable our recording front-end to achieve a dynamic range of 90dB (14b ENOB) in 1Hz - 200Hz, and 81dB (12.7b ENOB) in 1Hz - 5kHz. Implemented in a 40nm CMOS process, the prototype occupies an area of 0.113mm2/channel, consumes 7.3i W from a 1.2V supply, and can digitize neural signals from 1Hz to 5kHz. The input-referred noise is 1.8i Vrms (1Hz - 200Hz) and 6.35i Vrms (1Hz - 5kHz). The total harmonic distortion for a 200mVpp input at 1kHz is 81dB. Compared to state-of-the-art neural recording front-ends, this work improves Zin by 24.2x (for chopped front-ends), the linear-input range by 2x, the signal bandwidth (BW) by 10x, the dynamic range by 12.6dB, and tolerance to common-mode interferers by 6.5x, while maintaining comparable power and noise performance. The ADC alone consumes 4.5i W, has Zin of 20M , BW of 5kHz, and achieves a peak SNDR of 93.5dB for a 1.77Vpp differential input at 1kHz. The ADC's Schreier FOM (using SNDR) is 184dB, which is 6dB higher than the state-of-the-art in high-resolution ADCs.


Multi-Channel High-Dynamic-Range Implantable VCO-Based Neural-Sensing System

Multi-Channel High-Dynamic-Range Implantable VCO-Based Neural-Sensing System
Author: Wenlong Jiang
Publisher:
Total Pages: 111
Release: 2017
Genre:
ISBN:

Download Multi-Channel High-Dynamic-Range Implantable VCO-Based Neural-Sensing System Book in PDF, ePub and Kindle

Neuromodulation is the alternation of nerve activity through targeted delivery of a stimulus, such as electrical stimulation, to specific sites in the body. Deep brain stimulation (DBS) is a commonly-used neuromodulation treatment for neurological ailments when traditional methods, such as surgery, medication or psychotherapy, fail. DBS is performed by sending controlled electrical pulses into the brain to evoke the desired response. However, existing DBS systems can only administer open-loop stimulation over a limited number of channels. Future neuromodulation systems require a multi-channel closed-loop platform that can provide high spatial precision, and automatically adjust stimulation parameters based on feedback from recorded neural signals. This multi-channel, closed-loop system poses new challenges for brain-sensing circuit and system design. To enable closed-loop operation, the sensing circuit needs to work with concurrent stimulation. Therefore, it needs to provide a large input range to prevent saturation under stimulation artifacts. In addition, the sensing circuit should simultaneously meet device/patient safety constraints. Current state-of-the-art neural sensing circuits, however, do not meet these requirements. This work presents an implantable VCO-based neural-sensing front-end design intended for multi-channel, closed-loop neuromodulation applications. Specifically, it converts the input voltage into the phase domain, and performs direct digitization without any voltage-domain amplification, thus preventing saturation. The phase-domain processing allows a large input range that can comprise both stimulation artifacts and the neural signals. Four techniques have been implemented to overcome design challenges: (1) in the high-pass filter, we utilize a multi-rate duty-cycled resistor as a reliable solution to attenuate electrode-offsets; (2) inside of the VCO, chopping is applied to lower circuit noise; (3) at the analog-digital interface, we employ a new glitch-free quantizer; and (4) after digitization, circuit linearity is restored through the digital non-linearity correction. With these techniques, the design achieves 10x linear range and 2-3 bit ENOB improvement over prior-art with comparable power and noise performance. This work also presents a 32/64-channel sensing chip based on the proposed front-end design. The chip is assembled on a miniaturized PCB to achieve a fully integrated neuromodulation system. Sensing performance and function under concurrent stimulation have been verified in bench-top and in-vitro environments. This allows further development of a complete multi-channel closed-loop neuromodulation implant.


Closed-Loop Systems for Next-Generation Neuroprostheses

Closed-Loop Systems for Next-Generation Neuroprostheses
Author: Timothée Levi
Publisher: Frontiers Media SA
Total Pages: 326
Release: 2018-04-26
Genre:
ISBN: 2889454665

Download Closed-Loop Systems for Next-Generation Neuroprostheses Book in PDF, ePub and Kindle

Millions of people worldwide are affected by neurological disorders which disrupt the connections within the brain and between brain and body causing impairments of primary functions and paralysis. Such a number is likely to increase in the next years and current assistive technology is yet limited. A possible response to such disabilities, offered by the neuroscience community, is given by Brain-Machine Interfaces (BMIs) and neuroprostheses. The latter field of research is highly multidisciplinary, since it involves very different and disperse scientific communities, making it fundamental to create connections and to join research efforts. Indeed, the design and development of neuroprosthetic devices span/involve different research topics such as: interfacing of neural systems at different levels of architectural complexity (from in vitro neuronal ensembles to human brain), bio-artificial interfaces for stimulation (e.g. micro-stimulation, DBS: Deep Brain Stimulation) and recording (e.g. EMG: Electromyography, EEG: Electroencephalography, LFP: Local Field Potential), innovative signal processing tools for coding and decoding of neural activity, biomimetic artificial Spiking Neural Networks (SNN) and neural network modeling. In order to develop functional communication with the nervous system and to create a new generation of neuroprostheses, the study of closed-loop systems is mandatory. It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improvements in task performance, usability, and embodiment have all been reported in systems utilizing some form of feedback. The bi-directional communication between living neurons and artificial devices is the main final goal of those studies. However, closed-loop systems are still uncommon in the literature, mostly due to requirement of multidisciplinary effort. Therefore, through eBook on closed-loop systems for next-generation neuroprostheses, we encourage an active discussion among neurobiologists, electrophysiologists, bioengineers, computational neuroscientists and neuromorphic engineers. This eBook aims to facilitate this process by ordering the 25 contributions of this research in which we highlighted in three different parts: (A) Optimization of different blocks composing the closed-loop system, (B) Systems for neuromodulation based on DBS, EMG and SNN and (C) Closed-loop BMIs for rehabilitation.


Microelectronic Implants for Central and Peripheral Nervous System: Overview of Circuit and System Technology

Microelectronic Implants for Central and Peripheral Nervous System: Overview of Circuit and System Technology
Author: Morris (Ming-Dou) Ker
Publisher: Frontiers Media SA
Total Pages: 162
Release: 2022-01-11
Genre: Science
ISBN: 2889740234

Download Microelectronic Implants for Central and Peripheral Nervous System: Overview of Circuit and System Technology Book in PDF, ePub and Kindle

Professor Ker is on the Board of Amazingneuron. The Other Topic Editors Declare no Competing Interests With Regards to the Research Topic Theme.


A Modular Neural Interface for Massively Parallel Recording and Control

A Modular Neural Interface for Massively Parallel Recording and Control
Author: Christian T. Wentz
Publisher:
Total Pages: 79
Release: 2010
Genre:
ISBN:

Download A Modular Neural Interface for Massively Parallel Recording and Control Book in PDF, ePub and Kindle

The closed-loop Brain-Machine Interface (BMI) has long been a dream for clinicians and neuroscience researchers alike - that is, the ability to extract meaningful information from the brain, perform computation on this information, and selectively perturb neural dynamics in the brain for therapeutic benefit to the patient. Such systems have immediate application to treatment of paralysis, epilepsy and the amputated, and the potential for treatment of higher order cognitive dysfunction. Despite the promise of the BMI concept, the technology for bidirectional communication with the brain at sufficiently large scale to be truly therapeutically useful is lacking. Current state-of-the-art neuromodulation systems deliver open loop, 16-channel patterned electrical stimulation incapable of precisely targeting small numbers of neurons. Large-scale neural recording systems are limited to 16-128 electrodes, at the cost of several thousand dollars per channel. The ability to record from the awake behaving animal - let alone precisely modulate neural network dynamics in closed-loop fashion- presents a substantial challenge today. In this thesis, I present decoupled design solutions for three critical subcomponents of the closed-loop BMI - (i) a highly miniature, wirelessly powered and wirelessly controlled implantable optogenetic neuromodulation system capable of selective neural network control with single neural subtype- and millisecond-timescale precision, (ii) a prototype, highly parallel and scalable bio-potential recording system for simultaneous monitoring of many thousands of electrodes, and (iii) a space- and energy-efficient battery charger for biomedical applications. In aggregate, these systems overcome many of the fundamental architectural problems seen in the research and clinical environment today, potentially enabling a new class of neuromodulation system capable of treatment of higher-order cognitive dysfunction. In the research setting, these systems may be scaled to enable whole-brain recording, potentially yielding insights into large-scale neural network dynamics underlying disease and cognition.


Micro and Nanoelectronics Devices, Circuits and Systems

Micro and Nanoelectronics Devices, Circuits and Systems
Author: Trupti Ranjan Lenka
Publisher: Springer Nature
Total Pages: 519
Release: 2023-10-04
Genre: Technology & Engineering
ISBN: 9819944953

Download Micro and Nanoelectronics Devices, Circuits and Systems Book in PDF, ePub and Kindle

This book presents select proceedings of the International Conference on Micro and Nanoelectronics Devices, Circuits and Systems (MNDCS-2023). The book includes cutting-edge research papers in the emerging fields of micro and nanoelectronics devices, circuits, and systems from experts working in these fields over the last decade. The book is a unique collection of chapters from different areas with a common theme and is immensely useful to academic researchers and practitioners in the industry who work in this field.


Bioelectronic Medicine

Bioelectronic Medicine
Author: Valentin A. Pavlov
Publisher: Perspectives Cshl
Total Pages: 350
Release: 2019
Genre: Medical
ISBN: 9781621823025

Download Bioelectronic Medicine Book in PDF, ePub and Kindle

"Cold Spring Harbor perspectives in medicine."


Energy-efficient DSP Solutions for Simultaneous Neural Recording and Stimulation

Energy-efficient DSP Solutions for Simultaneous Neural Recording and Stimulation
Author: Sina Basir-Kazeruni
Publisher:
Total Pages: 115
Release: 2017
Genre:
ISBN:

Download Energy-efficient DSP Solutions for Simultaneous Neural Recording and Stimulation Book in PDF, ePub and Kindle

An increased interest in the investigation of the inner workings of the brain, together with recent technological advancements have been great catalysts for the development of neural stimulation and signal recording systems. These neural interfaces have enabled a better understanding of underlying neurological diseases, and provide promising therapeutic interventions for various neurological disorders. As discoveries and technological advancements continue, new challenges and opportunities emerge. One of the major challenges is the development of small, portable, and power-efficient closed-loop neuromodulation systems. The ability to simultaneously stimulate and record is a key capability required in enabling such systems. A closed-loop neuromodulation system is comprised of mainly four elements: (a) Stimulator: an energy-efficient and flexible stimulation engine, (b) Sensing: Low-power, high dynamic-range analog front-ends, (c) Digital Signal Processing (DSP): energy-/area-efficient digital signal processing units, and (d) Wireless transfer: an energy-efficient wireless power and data transfer unit. In summary, efficient and concurrent stimulation, sensing, processing, and transfer of neural signals are required. Design efforts are in full effect to realize leading edge stimulation, sensing, and wireless transfer technologies; however, one common difficulty in realizing concurrent stimulation and recording of neural signals is the presence of stimulation artifacts observed at the sensing end. Existing solutions (e.g., blanking the recording channel during stimulation or self-cancelling stimulation electrodes) have not answered all the challenges and lack the ability of continuous signal recording during the stimulation phase, thus rendering a critical portion of the data unusable. In this work we propose an energy-efficient, implantable, real-time Adaptive Stimulation Artifact Rejection (ASAR) engine, capable of adaptively removing stimulation artifact for varying stimulation characteristics at multiple sites. Additionally, a blind artifact template detection technique is introduced, which in combination with the proposed ASAR algorithm, eliminates the need for any prior knowledge of the temporal and structural characteristics of the stimulation pulse; this technique also enables us to effectively battle the non-linear mapping of brain tissue, and non-idealities of electrode interfaces, with linear filtering. Two engines, implemented in 40nm CMOS, achieve convergence of