Imaging Initial Events In T Cell Activation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Imaging Initial Events In T Cell Activation PDF full book. Access full book title Imaging Initial Events In T Cell Activation.

Imaging Initial Events in T-cell Activation

Imaging Initial Events in T-cell Activation
Author: Lawrence Otto Klein
Publisher: Stanford University
Total Pages: 171
Release: 2010
Genre:
ISBN:

Download Imaging Initial Events in T-cell Activation Book in PDF, ePub and Kindle

This thesis is organized in four chapters. Chapter I is intended to give a general introduction to [alpha][beta] T cells, their role in the immune system, their T cell receptor (TCR), and the specific TCR transgenic system used in this work. In chapter II the TCR signaling pathway is introduced, and a photoactivation method we developed for interrogating proximal events in this pathway is described. We describe experiments using this method that defined delay times between TCR-pMHC binding and initiation of various TCR proximal signaling events. We found delays much shorter than previous measurements suggested, and propose that they may represent a feature of the pathway predicted by the kinetic-proofreading model of TCR signaling. In this chapter we also describe experiments that took advantage of the ability to precisely define a sub-cellular region of TCR stimulation to interrogate the spatial dynamics of TCR signaling. We found that the T cell membrane was compartmentalized such that even rapidly diffusible second-messengers were confined to the local region of stimulation. By stimulating distinct regions of T cells sequentially, we showed that desensitization occurred rapidly in some branches of the TCR signaling pathway but not at all in others. In chapter III we introduce previous research that sought to define properties of the TCR-pMHC interaction that determine stimulatory potency, and explain how these studies have led to interest in measuring kinetic parameters of the TCR-pMHC interaction in a native two-dimensional environment. We describe development of a new method to measure two-dimensional kinetics using a combination of our photoactivation system and direct detection of receptor-ligand binding via FRET. Using this method we showed that the rate of pMHC binding in a T cell contact interface was not influenced by a variety of cellular factors, but was defined by the kinetics of TCR-pMHC binding measured in vitro. We developed a quantitative method for analyzing our data and found that it fit very well to a simple bimolecular binding model, yielding kinetic parameters in clear agreement with 3D in vitro measurements. Our technique allowed direct, bulk measurement of 2D receptor-ligand binding and has the potential to measure kinetics too fast to measure by previous methods. Finally, in chapter IV we discuss earlier work describing molecular movements that occur during formation of the T cell-APC contact, called the immunological synapse. We describe the results of a series of experiments using our combined FRET and photoactivation assay that revealed the dynamics of TCR-pMHC interactions during immunological synapse formation. Our experiments showed that ligand binding was initiated in small clusters that were stable for tens of seconds while being actively transported toward the center of the cell. We describe the interesting observations that TCR-pMHC binding occurred in a distribution more heterogeneous than either the receptor or ligand distribution, and was regulated by cytoskeletal activity. We showed that in naïve cells this distribution was markedly different than in antigen-experienced cells, indicating that these two cell types may search for antigen in different ways. The results in this chapter indicate that molecular interactions in the synapse are actively regulated by cellular processes and are much more complex than would be expected from measurements of molecular distributions.


Imaging Initial Events in T-cell Activation

Imaging Initial Events in T-cell Activation
Author: Lawrence Otto Klein
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Imaging Initial Events in T-cell Activation Book in PDF, ePub and Kindle

This thesis is organized in four chapters. Chapter I is intended to give a general introduction to [alpha][beta] T cells, their role in the immune system, their T cell receptor (TCR), and the specific TCR transgenic system used in this work. In chapter II the TCR signaling pathway is introduced, and a photoactivation method we developed for interrogating proximal events in this pathway is described. We describe experiments using this method that defined delay times between TCR-pMHC binding and initiation of various TCR proximal signaling events. We found delays much shorter than previous measurements suggested, and propose that they may represent a feature of the pathway predicted by the kinetic-proofreading model of TCR signaling. In this chapter we also describe experiments that took advantage of the ability to precisely define a sub-cellular region of TCR stimulation to interrogate the spatial dynamics of TCR signaling. We found that the T cell membrane was compartmentalized such that even rapidly diffusible second-messengers were confined to the local region of stimulation. By stimulating distinct regions of T cells sequentially, we showed that desensitization occurred rapidly in some branches of the TCR signaling pathway but not at all in others. In chapter III we introduce previous research that sought to define properties of the TCR-pMHC interaction that determine stimulatory potency, and explain how these studies have led to interest in measuring kinetic parameters of the TCR-pMHC interaction in a native two-dimensional environment. We describe development of a new method to measure two-dimensional kinetics using a combination of our photoactivation system and direct detection of receptor-ligand binding via FRET. Using this method we showed that the rate of pMHC binding in a T cell contact interface was not influenced by a variety of cellular factors, but was defined by the kinetics of TCR-pMHC binding measured in vitro. We developed a quantitative method for analyzing our data and found that it fit very well to a simple bimolecular binding model, yielding kinetic parameters in clear agreement with 3D in vitro measurements. Our technique allowed direct, bulk measurement of 2D receptor-ligand binding and has the potential to measure kinetics too fast to measure by previous methods. Finally, in chapter IV we discuss earlier work describing molecular movements that occur during formation of the T cell-APC contact, called the immunological synapse. We describe the results of a series of experiments using our combined FRET and photoactivation assay that revealed the dynamics of TCR-pMHC interactions during immunological synapse formation. Our experiments showed that ligand binding was initiated in small clusters that were stable for tens of seconds while being actively transported toward the center of the cell. We describe the interesting observations that TCR-pMHC binding occurred in a distribution more heterogeneous than either the receptor or ligand distribution, and was regulated by cytoskeletal activity. We showed that in naïve cells this distribution was markedly different than in antigen-experienced cells, indicating that these two cell types may search for antigen in different ways. The results in this chapter indicate that molecular interactions in the synapse are actively regulated by cellular processes and are much more complex than would be expected from measurements of molecular distributions.


Molecular Biology of The Cell

Molecular Biology of The Cell
Author: Bruce Alberts
Publisher:
Total Pages: 0
Release: 2002
Genre: Cytology
ISBN: 9780815332183

Download Molecular Biology of The Cell Book in PDF, ePub and Kindle


Signaling Mechanisms Regulating T Cell Diversity and Function

Signaling Mechanisms Regulating T Cell Diversity and Function
Author: Jonathan Soboloff
Publisher: CRC Press
Total Pages: 258
Release: 2017-03-27
Genre: Medical
ISBN: 149870509X

Download Signaling Mechanisms Regulating T Cell Diversity and Function Book in PDF, ePub and Kindle

T cells play a vital role mediating adaptive immunity, a specific acquired resistance to an infectious agent produced by the introduction of an antigen. There are a variety of T cell types with different functions. They are called T cells, because they are derived from the thymus gland. This volume discusses how T cells are regulated through the operation of signaling mechanisms. Topics covered include positive and negative selection, early events in T cell receptor engagement, and various T cell subsets.


Janeway's Immunobiology

Janeway's Immunobiology
Author: Kenneth Murphy
Publisher: Garland Science
Total Pages:
Release: 2010-06-22
Genre: Medical
ISBN: 9780815344575

Download Janeway's Immunobiology Book in PDF, ePub and Kindle

The Janeway's Immunobiology CD-ROM, Immunobiology Interactive, is included with each book, and can be purchased separately. It contains animations and videos with voiceover narration, as well as the figures from the text for presentation purposes.


Brain Tumor Imaging

Brain Tumor Imaging
Author: Elke Hattingen
Publisher: Springer
Total Pages: 166
Release: 2015-09-02
Genre: Medical
ISBN: 3642450407

Download Brain Tumor Imaging Book in PDF, ePub and Kindle

This book describes the basics, the challenges and the limitations of state of the art brain tumor imaging and examines in detail its impact on diagnosis and treatment monitoring. It opens with an introduction to the clinically relevant physical principles of brain imaging. Since MR methodology plays a crucial role in brain imaging, the fundamental aspects of MR spectroscopy, MR perfusion and diffusion-weighted MR methods are described, focusing on the specific demands of brain tumor imaging. The potential and the limits of new imaging methodology are carefully addressed and compared to conventional MR imaging. In the main part of the book, the most important imaging criteria for the differential diagnosis of solid and necrotic brain tumors are delineated and illustrated in examples. A closing section is devoted to the use of MR methods for the monitoring of brain tumor therapy. The book is intended for radiologists, neurologists, neurosurgeons, oncologists and other scientists in the biomedical field with an interest in neuro-oncology.


Human Herpesviruses

Human Herpesviruses
Author: Ann Arvin
Publisher: Cambridge University Press
Total Pages: 1325
Release: 2007-08-16
Genre: Medical
ISBN: 1139461648

Download Human Herpesviruses Book in PDF, ePub and Kindle

This comprehensive account of the human herpesviruses provides an encyclopedic overview of their basic virology and clinical manifestations. This group of viruses includes human simplex type 1 and 2, Epstein–Barr virus, Kaposi's Sarcoma-associated herpesvirus, cytomegalovirus, HHV6A, 6B and 7, and varicella-zoster virus. The viral diseases and cancers they cause are significant and often recurrent. Their prevalence in the developed world accounts for a major burden of disease, and as a result there is a great deal of research into the pathophysiology of infection and immunobiology. Another important area covered within this volume concerns antiviral therapy and the development of vaccines. All these aspects are covered in depth, both scientifically and in terms of clinical guidelines for patient care. The text is illustrated generously throughout and is fully referenced to the latest research and developments.