Ice Pressure Distribution On Conical Structures During Ice Structure Interaction PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Ice Pressure Distribution On Conical Structures During Ice Structure Interaction PDF full book. Access full book title Ice Pressure Distribution On Conical Structures During Ice Structure Interaction.

Ice Interaction with Offshore Structures

Ice Interaction with Offshore Structures
Author: A. B. Cammaert
Publisher: Van Nostrand Reinhold Company
Total Pages: 456
Release: 1988
Genre: Nature
ISBN:

Download Ice Interaction with Offshore Structures Book in PDF, ePub and Kindle


Ice Crushing Pressure on Non-planar Surface

Ice Crushing Pressure on Non-planar Surface
Author: Hyunwook Kim
Publisher:
Total Pages:
Release: 2014
Genre:
ISBN:

Download Ice Crushing Pressure on Non-planar Surface Book in PDF, ePub and Kindle

The objective of this study is to investigate ice-structure interaction and develop a numerical model to predict the changes of ice loads and pressure during ice-structure interaction on non-planar surfaces. It is important to understand the sequential ice pressure and load development during ice-structure interaction. This is particularly true for non-planar surfaces as most ships and many offshore structures are composed of near-flat panels that may be dented as part of in-service loading leading to panels that are concave. An important question is whether these concave surfaces act as load-increasers for subsequent ice interaction. Most laboratory and field trial tests have been performed based on the assumption that the structural shape is flat. Therefore, little information is available for cases where the structure is concave due to plastic deformation, or specific areas with intentional structural concave shapes. In support of this objective, a series of laboratory-scale ice crushing tests were performed. Force, time and displacement data were measured. It was observed that ice crushing on concave shape indenters induced higher ice loads and pressure magnitudes compared to flat indenters. As part of the experimental program, techniques to use pressure measurement film were adopted to obtain ice-structure contact location, actual contact area, and changes of magnitude of pressure within the contact region. Following the experimental program a numerical model of ice crushing for concave surfaces was developed. In order to achieve valid numerical simulation results, a crushable foam model was modified by adding failure criteria. This followed the effect of indenter shape, level of confinement, test speed and cone angle to be evaluated in the numerical model and compared with the experimental results. The numerical model is shown to be valid for the flat indenter cases and the wedge and conical-shaped indenter cases. The findings from this study show that the shape of the indenting surfaces does influence ice forces and pressure and that generally, concave indentation surfaces lead to increases in pressure and force arising from ice crushing. These effects can be qualified globally and locally using the pressure measurement film, and the effects can be modeled numerically. This work demonstrates that the assumption of ice loads associated with flat or convex shapes may lead to under design for concave shapes or may lead to structural overload in cases where structures previously that have been indented.


Ice-Structure Interaction

Ice-Structure Interaction
Author: International Union of Theoretical and Applied Mechanics
Publisher: Springer
Total Pages: 760
Release: 1991-07
Genre: Science
ISBN:

Download Ice-Structure Interaction Book in PDF, ePub and Kindle

IUTAM-IAHR Symposium on Ice-Structure Interaction Professor Bez Tabarrok, Chairman of the Canadian National Committee (CNC) of the International Union of Theoretical and Applied Mechanics (IUTAM) invited Professor Derek Muggeridge to organize a symposium on ice structure interaction. Dr. Muggeridge readily agreed and prepared a proposal that was endorsed by the CNC and presented to the General Assembly Meeting of IUTAM for their consideration. This Assembly gave its approval and provided the local organizing committee with the names of individuals who were willing to serve on the Scientific Committee. Dr. Muggeridge became chairman of this committee and Dr. Ian Jordaan became co-chairman of this committee as well as chairman of the local organizing committee. The symposium followed the very successful previous meeting, chaired by Professor P. Tryde in Copenhagen, by ten years. Both symposia uti lized Springer-Verlag to publish their proceedings. The Faculty of En gineering and Applied Science at Memorial University of Newfoundland were particul{lXly pleased to host this prestigious symposium as it marked the twentieth anniversary of its Ocean Engineering Research Centre.


Ice Action on Pairs of Cylindrical and Conical Structures

Ice Action on Pairs of Cylindrical and Conical Structures
Author: Kazuyuki Kato
Publisher:
Total Pages: 35
Release: 1983
Genre: Ice
ISBN:

Download Ice Action on Pairs of Cylindrical and Conical Structures Book in PDF, ePub and Kindle

Ice action on two cylindrical and conical structures, located side by side, was investigated in a small-scale experimental study to determine the interference on the ice forces generated during ice-structure interaction. The proximity of the two structures changes the mode of ice failure, the magnitude and direction of ice forces on the individual structure, and the dominant frequency of ice force variations. Interference effects were determined by comparing the experimental results of tests at different structure spacings.


Ice-Structure Interaction

Ice-Structure Interaction
Author: Stephen J. Jones
Publisher: Springer Science & Business Media
Total Pages: 724
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 3642841007

Download Ice-Structure Interaction Book in PDF, ePub and Kindle

IUTAM-IAHR Symposium on Ice-Structure Interaction Professor Bez Tabarrok, Chairman of the Canadian National Committee (CNC) of the International Union of Theoretical and Applied Mechanics (IUTAM) invited Professor Derek Muggeridge to organize a symposium on ice structure interaction. Dr. Muggeridge readily agreed and prepared a proposal that was endorsed by the CNC and presented to the General Assembly Meeting of IUTAM for their consideration. This Assembly gave its approval and provided the local organizing committee with the names of individuals who were willing to serve on the Scientific Committee. Dr. Muggeridge became chairman of this committee and Dr. Ian Jordaan became co-chairman of this committee as well as chairman of the local organizing committee. The symposium followed the very successful previous meeting, chaired by Professor P. Tryde in Copenhagen, by ten years. Both symposia uti lized Springer-Verlag to publish their proceedings. The Faculty of En gineering and Applied Science at Memorial University of Newfoundland were particul{lXly pleased to host this prestigious symposium as it marked the twentieth anniversary of its Ocean Engineering Research Centre.


Modelling Dynamic Ice-structure Interaction Based on High-pressure Zones' Behaviour at Medium-scale

Modelling Dynamic Ice-structure Interaction Based on High-pressure Zones' Behaviour at Medium-scale
Author: Ridwan Hossain
Publisher:
Total Pages:
Release: 2021
Genre:
ISBN:

Download Modelling Dynamic Ice-structure Interaction Based on High-pressure Zones' Behaviour at Medium-scale Book in PDF, ePub and Kindle

Although ice-induced vibrations (IIV) resulting from dynamic ice-structure interaction have been reported as infrequent occurrences in nature, the catastrophic consequences of these events makes them a fundamental design consideration for structures in ice-prone regions. Over the last 50 years, these events have affected a wide range of structures, including bottom founded lighthouses, channel markers, jacket and caisson retained structures, and have led to operational shutdowns, human discomfort, and even complete collapse of the structure in some cases. Rigorous experimental investigations and theoretical modeling approaches over the years have provided valuable insight into the physical mechanism of the process; however, a significant amount of uncertainty in identifying the conditions associated with IIV and its severity still exists. The primary source of the uncertainty comes from the complexity of the ice failure process, since it is highly influenced by the interplay of different competing mechanisms, such as fracture, damage and microstructural changes. One of the fundamental components of compressive ice failure is the development of 'high-pressure zones (hpzs),' which are responsible for transmitting the majority of the loads in ice-structure interactions. As the properties and dynamic behaviour of hpzs exhibit similar characteristics over a wide range of scales, efforts to link hpz mechanics with the occurrence of dynamic ice-structure interactions is seen as a promising approach. During ice-structure interaction, the ice failure process is highly influenced by different interaction parameters. An uncertainty analysis with self-excited vibration modeling approaches was performed first to identify the critical parameters and how their effects can propagate through the dynamic ice-structure interaction process. Based on the simulations, ice temperature, interaction speed, and interaction area were identified as the key parameters affecting the dynamic ice-structure interaction process. A medium-scale ice crushing dynamics test program was then carried out to study the influence of these parameters on the dynamics of hpzs under controlled conditions with variable structural compliance. In general, more severe dynamics associated with failure behaviour were observed to be more pronounced for colder ice, smaller interaction areas, higher interaction speed, and lower structural compliances. The observed dynamics of a single hpz was then used to develop a simplified ice-structure interaction model. The behaviour of the hpz was estimated using results from previous triaxial tests, which showed a non-linear relationship between hpz stiffness and the nominal strain, with the degree of softening depending on the average strain-rate. Two distinct failure processes were assessed in the context of the periodic sinusoidal response of the structure using the model. First, such responses can result from the vibration within the layer of damaged ice when the formation of the damaged layer and the extrusion process become cyclical in pure crushing. Theoretical calculation from a previous study was adopted to estimate the equilibrium layer thickness that can result in such vibrations, and the model showed reasonably good agreement with the calculations. The other failure process considered was for spall-dominated interactions with occasional crushing events. Such a failure process can result in frequency lock-in of the structure; however, these responses were observed to be highly sensitive to interaction speed and structural parameters. This was identified as the primary reason for the infrequent observation of frequency lock-in in full-scale interactions. Although the simplified modeling framework presented here shows promising results, further experimental investigation and modeling refinement are required for a full-scale implementation.