Hysteretic Behavior Of Reinforced Concrete Columns Subjected To High Axial And Cyclic Shear Forces PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Hysteretic Behavior Of Reinforced Concrete Columns Subjected To High Axial And Cyclic Shear Forces PDF full book. Access full book title Hysteretic Behavior Of Reinforced Concrete Columns Subjected To High Axial And Cyclic Shear Forces.

Hysteretic Modeling of Shear-critical Reinforced Concrete Columns

Hysteretic Modeling of Shear-critical Reinforced Concrete Columns
Author: Tanmoy Chowdhury
Publisher:
Total Pages: 396
Release: 2007
Genre: Columns
ISBN:

Download Hysteretic Modeling of Shear-critical Reinforced Concrete Columns Book in PDF, ePub and Kindle

Abstract: Prior studies have shown that older reinforced concrete buildings designed before the introduction of the modern seismic code in the early 1970s are vulnerable to damage and collapse during an earthquake. In particular, building columns did not have the lateral strength or ductility to withstand the demands imposed by the effects of a severe earthquake ground motion, and were often the most critical components of such earthquake damage-prone structures. They were typically characterized by insufficient and poorly detailed transverse reinforcement, widely spaced stirrups and low longitudinal reinforcement ratios. The focus of this research is to develop a suitable hysteretic model that would predict the lateral deformation behavior of lightly reinforced or shear-critical columns subjected to seismic and gravity loads. Tests of reinforced concrete columns under lateral loads have shown that the total drift stems from deformations owing to flexure, reinforcement slip, and shear. The monotonic response is initially established for the separate components in order to serve as a primary backbone curve for the cyclic force-displacement relationships. Existing analytical and experimental research on lightly reinforced columns is examined. This information is used, and when required, modified to ultimately develop a suitable overall hysteretic model that would accurately predict the lateral response of this class of columns with a limited computational effort. Cyclic models are developed for each deformation component that incorporate the strength, stiffness, and energy dissipation characteristics of the structural members. The total hysteretic response was derived by coupling flexure, reinforcement slip, and shear responses as springs in series. The behavior of a column is classified into one of five categories based on a comparison of the shear, yield, and flexural strengths. The expected behavior in each category determines rules that govern the combination of the deformation components. The proposed hysteretic model is calibrated against experimental results for correlation and verification studies. Overall, the model did a reasonable job of simulating the loaddeformation relationships of shear-critical columns. It provides a suitable platform to analyze older reinforced concrete buildings with a view to determining the amount of remediation necessary for satisfactory seismic performance.


Seismic Design and Retrofit of Bridges

Seismic Design and Retrofit of Bridges
Author: M. J. N. Priestley
Publisher: John Wiley & Sons
Total Pages: 704
Release: 1996-04-12
Genre: Technology & Engineering
ISBN: 9780471579984

Download Seismic Design and Retrofit of Bridges Book in PDF, ePub and Kindle

Because of their structural simplicity, bridges tend to beparticularly vulnerable to damage and even collapse when subjectedto earthquakes or other forms of seismic activity. Recentearthquakes, such as the ones in Kobe, Japan, and Oakland,California, have led to a heightened awareness of seismic risk andhave revolutionized bridge design and retrofit philosophies. In Seismic Design and Retrofit of Bridges, three of the world's topauthorities on the subject have collaborated to produce the mostexhaustive reference on seismic bridge design currently available.Following a detailed examination of the seismic effects of actualearthquakes on local area bridges, the authors demonstrate designstrategies that will make these and similar structures optimallyresistant to the damaging effects of future seismicdisturbances. Relying heavily on worldwide research associated with recentquakes, Seismic Design and Retrofit of Bridges begins with anin-depth treatment of seismic design philosophy as it applies tobridges. The authors then describe the various geotechnicalconsiderations specific to bridge design, such as soil-structureinteraction and traveling wave effects. Subsequent chapters coverconceptual and actual design of various bridge superstructures, andmodeling and analysis of these structures. As the basis for their design strategies, the authors' focus is onthe widely accepted capacity design approach, in which particularlyvulnerable locations of potentially inelastic flexural deformationare identified and strengthened to accommodate a greater degree ofstress. The text illustrates how accurate application of thecapacity design philosophy to the design of new bridges results instructures that can be expected to survive most earthquakes withonly minor, repairable damage. Because the majority of today's bridges were built before thecapacity design approach was understood, the authors also devoteseveral chapters to the seismic assessment of existing bridges,with the aim of designing and implementing retrofit measures toprotect them against the damaging effects of future earthquakes.These retrofitting techniques, though not considered appropriate inthe design of new bridges, are given considerable emphasis, sincethey currently offer the best solution for the preservation ofthese vital and often historically valued thoroughfares. Practical and applications-oriented, Seismic Design and Retrofit ofBridges is enhanced with over 300 photos and line drawings toillustrate key concepts and detailed design procedures. As the onlytext currently available on the vital topic of seismic bridgedesign, it provides an indispensable reference for civil,structural, and geotechnical engineers, as well as students inrelated engineering courses. A state-of-the-art text on earthquake-proof design and retrofit ofbridges Seismic Design and Retrofit of Bridges fills the urgent need for acomprehensive and up-to-date text on seismic-ally resistant bridgedesign. The authors, all recognized leaders in the field,systematically cover all aspects of bridge design related toseismic resistance for both new and existing bridges. * A complete overview of current design philosophy for bridges,with related seismic and geotechnical considerations * Coverage of conceptual design constraints and their relationshipto current design alternatives * Modeling and analysis of bridge structures * An exhaustive look at common building materials and theirresponse to seismic activity * A hands-on approach to the capacity design process * Use of isolation and dissipation devices in bridge design * Important coverage of seismic assessment and retrofit design ofexisting bridges


NUREG/CR.

NUREG/CR.
Author: U.S. Nuclear Regulatory Commission
Publisher:
Total Pages: 108
Release: 1981
Genre: Nuclear energy
ISBN:

Download NUREG/CR. Book in PDF, ePub and Kindle


Modeling of Inelastic Behavior of RC Structures Under Seismic Loads

Modeling of Inelastic Behavior of RC Structures Under Seismic Loads
Author: P. Benson Shing
Publisher: ASCE Publications
Total Pages: 636
Release: 2001-01-01
Genre: Technology & Engineering
ISBN: 9780784474969

Download Modeling of Inelastic Behavior of RC Structures Under Seismic Loads Book in PDF, ePub and Kindle

Proceedings of the U.S.?Japan Seminar on Post-Peak Behavior of Reinforced Concrete Structures Subjected to Seismic Loads: Recent Advances and Challenges on Analysis and Design, held in Tokyo and Lake Yamanaka, Japan, October 25-29, 1999. Sponsored by the National Science Foundation, U.S.A.; Japan Society for the Promotion of Science; Japan Concrete Institute. This collection presents the latest ideas and findings on the inelastic behavior of reinforced concrete (RC) structures from the analysis and design standpoints. These papers discuss state-of-the-art concrete material models and analysis methods that can be used to simulate and understand the inelastic behavior of RC structures, as well as design issues that can improve the seismic performance of these structures. Topics include modeling of concrete behavior; modeling of RC structures (finite element approach and macro-element approach); and experimental studies, analysis, and design issues.


Advances in Structural Vibration

Advances in Structural Vibration
Author: Subashisa Dutta
Publisher: Springer Nature
Total Pages: 580
Release: 2020-10-11
Genre: Technology & Engineering
ISBN: 9811558620

Download Advances in Structural Vibration Book in PDF, ePub and Kindle

This book consists of selected and peer-reviewed papers presented at the 13th International Conference on Vibration Problems (ICOVP 2017). The topics covered in this book include different structural vibration problems such as dynamics and stability under normal and seismic loading, and wave propagation. The book also discusses different materials such as composite, piezoelectric, and functionally graded materials for improving the stiffness and damping properties of structures. The contents of this book can be useful for beginners, researchers and professionals interested in structural vibration and other allied fields.