Human Robot Motion PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Human Robot Motion PDF full book. Access full book title Human Robot Motion.

Modelling Human Motion

Modelling Human Motion
Author: Nicoletta Noceti
Publisher: Springer Nature
Total Pages: 351
Release: 2020-07-09
Genre: Computers
ISBN: 3030467325

Download Modelling Human Motion Book in PDF, ePub and Kindle

The new frontiers of robotics research foresee future scenarios where artificial agents will leave the laboratory to progressively take part in the activities of our daily life. This will require robots to have very sophisticated perceptual and action skills in many intelligence-demanding applications, with particular reference to the ability to seamlessly interact with humans. It will be crucial for the next generation of robots to understand their human partners and at the same time to be intuitively understood by them. In this context, a deep understanding of human motion is essential for robotics applications, where the ability to detect, represent and recognize human dynamics and the capability for generating appropriate movements in response sets the scene for higher-level tasks. This book provides a comprehensive overview of this challenging research field, closing the loop between perception and action, and between human-studies and robotics. The book is organized in three main parts. The first part focuses on human motion perception, with contributions analyzing the neural substrates of human action understanding, how perception is influenced by motor control, and how it develops over time and is exploited in social contexts. The second part considers motion perception from the computational perspective, providing perspectives on cutting-edge solutions available from the Computer Vision and Machine Learning research fields, addressing higher-level perceptual tasks. Finally, the third part takes into account the implications for robotics, with chapters on how motor control is achieved in the latest generation of artificial agents and how such technologies have been exploited to favor human-robot interaction. This book considers the complete human-robot cycle, from an examination of how humans perceive motion and act in the world, to models for motion perception and control in artificial agents. In this respect, the book will provide insights into the perception and action loop in humans and machines, joining together aspects that are often addressed in independent investigations. As a consequence, this book positions itself in a field at the intersection of such different disciplines as Robotics, Neuroscience, Cognitive Science, Psychology, Computer Vision, and Machine Learning. By bridging these different research domains, the book offers a common reference point for researchers interested in human motion for different applications and from different standpoints, spanning Neuroscience, Human Motor Control, Robotics, Human-Robot Interaction, Computer Vision and Machine Learning. Chapter 'The Importance of the Affective Component of Movement in Action Understanding' of this book is available open access under a CC BY 4.0 license at link.springer.com.


Motion Planning for Humanoid Robots

Motion Planning for Humanoid Robots
Author: Kensuke Harada
Publisher: Springer Science & Business Media
Total Pages: 320
Release: 2010-08-12
Genre: Technology & Engineering
ISBN: 1849962200

Download Motion Planning for Humanoid Robots Book in PDF, ePub and Kindle

Research on humanoid robots has been mostly with the aim of developing robots that can replace humans in the performance of certain tasks. Motion planning for these robots can be quite difficult, due to their complex kinematics, dynamics and environment. It is consequently one of the key research topics in humanoid robotics research and the last few years have witnessed considerable progress in the field. Motion Planning for Humanoid Robots surveys the remarkable recent advancement in both the theoretical and the practical aspects of humanoid motion planning. Various motion planning frameworks are presented in Motion Planning for Humanoid Robots, including one for skill coordination and learning, and one for manipulating and grasping tasks. The problem of planning sequences of contacts that support acyclic motion in a highly constrained environment is addressed and a motion planner that enables a humanoid robot to push an object to a desired location on a cluttered table is described. The main areas of interest include: • whole body motion planning, • task planning, • biped gait planning, and • sensor feedback for motion planning. Torque-level control of multi-contact behavior, autonomous manipulation of moving obstacles, and movement control and planning architecture are also covered. Motion Planning for Humanoid Robots will help readers to understand the current research on humanoid motion planning. It is written for industrial engineers, advanced undergraduate and postgraduate students.


Sensing, Intelligence, Motion

Sensing, Intelligence, Motion
Author: Vladimir J. Lumelsky
Publisher: John Wiley & Sons
Total Pages: 456
Release: 2005-11-28
Genre: Technology & Engineering
ISBN: 0471738190

Download Sensing, Intelligence, Motion Book in PDF, ePub and Kindle

A leap forward in the field of robotics Until now, most of the advances in robotics have taken place instructured environments. Scientists and engineers have designedhighly sophisticated robots, but most are still only able tooperate and move in predetermined, planned environments designedspecifically for the robots and typically at very high cost. Thisnew book takes robotics to the next level by setting forth thetheory and techniques needed to achieve robotic motion inunstructured environments. The ability to move and operate in anarbitrary, unplanned environment will lead to automating a widerange of new robotic tasks, such as patient care, toxic sitecleanup, and planetary exploration. The approach that opens the door for robots to handle unstructuredtasks is known as Sensing-Intelligence-Motion (SIM), which drawsfrom research in topology, computational complexity, controltheory, and sensing hardware. Using SIM as an underlyingfoundation, the author's carefully structured presentation isdesigned to: * Formulate the challenges of sensor-based motion planning and thenbuild a theoretical foundation for sensor-based motion planningstrategies * Investigate promising algorithmic strategies for mobile robotsand robot arm manipulators, in both cases addressing motionplanning for the whole robot body * Compare robot performance to human performance in sensor-basedmotion planning to gain better insight into the challenges of SIMand help build synergistic human-robot teams for tele-operationtasks. It is both exciting and encouraging to discover that robotperformance decisively exceeds human performance in certain tasksrequiring spatial reasoning, even when compared to trainedoperators * Review sensing hardware that is necessary to realize the SIMparadigm Some 200 illustrations, graphic sketches, and photos are includedto clarify key issues, develop and validate motion planningapproaches, and demonstrate full systems in operation. As the first book fully devoted to robot motion planning inunstructured environments, Sensing, Intelligence, Motion is amust-read for engineers, scientists, and researchers involved inrobotics. It will help them migrate robots from highly specializedapplications in factories to widespread use in society whereautonomous robot motion is needed.


Biologically Inspired Control of Humanoid Robot Arms

Biologically Inspired Control of Humanoid Robot Arms
Author: Adam Spiers
Publisher: Springer
Total Pages: 286
Release: 2016-05-19
Genre: Technology & Engineering
ISBN: 3319301608

Download Biologically Inspired Control of Humanoid Robot Arms Book in PDF, ePub and Kindle

This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniques investigated in this book. The method includes attractive features such as the decoupling of motion into task and posture components. Various developments are made in each of these elements. Simple cost functions inspired by biomechanical “effort” and “discomfort” generate realistic posture motion. Sliding-mode techniques overcome robustness shortcomings for practical implementation. Arm compliance is achieved via a method of model-free adaptive control that also deals with actuator saturation via anti-windup compensation. A neural-network-centered learning-by-observation scheme generates new task motions, based on motion-capture data recorded from human volunteers. In other parts of the book, motion capture is used to test theories of human movement. All developed controllers are applied to the reaching motion of a humanoid robot arm and are demonstrated to be practically realisable. This book is designed to be of interest to those wishing to achieve dynamics-based human-like robot-arm motion in academic research, advanced study or certain industrial environments. The book provides motivations, extensive reviews, research results and detailed explanations. It is not only suited to practising control engineers, but also applicable for general roboticists who wish to develop control systems expertise in this area.


Dance Notations and Robot Motion

Dance Notations and Robot Motion
Author: Jean-Paul Laumond
Publisher: Springer
Total Pages: 433
Release: 2015-11-24
Genre: Technology & Engineering
ISBN: 3319257390

Download Dance Notations and Robot Motion Book in PDF, ePub and Kindle

How and why to write a movement? Who is the writer? Who is the reader? They may be choreographers working with dancers. They may be roboticists programming robots. They may be artists designing cartoons in computer animation. In all such fields the purpose is to express an intention about a dance, a specific motion or an action to perform, in terms of intelligible sequences of elementary movements, as a music score that would be devoted to motion representation. Unfortunately there is no universal language to write a motion. Motion languages live together in a Babel tower populated by biomechanists, dance notators, neuroscientists, computer scientists, choreographers, roboticists. Each community handles its own concepts and speaks its own language. The book accounts for this diversity. Its origin is a unique workshop held at LAAS-CNRS in Toulouse in 2014. Worldwide representatives of various communities met there. Their challenge was to reach a mutual understanding allowing a choreographer to access robotics concepts, or a computer scientist to understand the subtleties of dance notation. The liveliness of this multidisciplinary meeting is reflected by the book thank to the willingness of authors to share their own experiences with others.


Robot Motion Planning

Robot Motion Planning
Author: Jean-Claude Latombe
Publisher: Springer Science & Business Media
Total Pages: 668
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1461540224

Download Robot Motion Planning Book in PDF, ePub and Kindle

One of the ultimate goals in Robotics is to create autonomous robots. Such robots will accept high-level descriptions of tasks and will execute them without further human intervention. The input descriptions will specify what the user wants done rather than how to do it. The robots will be any kind of versatile mechanical device equipped with actuators and sensors under the control of a computing system. Making progress toward autonomous robots is of major practical inter est in a wide variety of application domains including manufacturing, construction, waste management, space exploration, undersea work, as sistance for the disabled, and medical surgery. It is also of great technical interest, especially for Computer Science, because it raises challenging and rich computational issues from which new concepts of broad useful ness are likely to emerge. Developing the technologies necessary for autonomous robots is a formidable undertaking with deep interweaved ramifications in auto mated reasoning, perception and control. It raises many important prob lems. One of them - motion planning - is the central theme of this book. It can be loosely stated as follows: How can a robot decide what motions to perform in order to achieve goal arrangements of physical objects? This capability is eminently necessary since, by definition, a robot accomplishes tasks by moving in the real world. The minimum one would expect from an autonomous robot is the ability to plan its x Preface own motions.


Human-Robot Interaction

Human-Robot Interaction
Author: Christoph Bartneck
Publisher: Cambridge University Press
Total Pages: 263
Release: 2020-05-07
Genre: Computers
ISBN: 1108735401

Download Human-Robot Interaction Book in PDF, ePub and Kindle

This broad overview for graduate students introduces multidisciplinary topics from robotics to sociology which are needed to understand the area.


human-robot motion

human-robot motion
Author: Rémi Paulin
Publisher:
Total Pages: 0
Release: 2018
Genre:
ISBN:

Download human-robot motion Book in PDF, ePub and Kindle

Pour les robots mobiles autonomes conçus pour partager notre environnement, la sécurité et l'efficacité de leur trajectoire ne sont pas les seuls aspects à prendre en compte pour la planification de leur mouvement: ils doivent respecter des règles sociales afin de ne pas gêner les personnes environnantes. Dans un tel contexte social, la plupart des techniques de planification de mouvement actuelles s'appuient fortement sur le concept d'espaces sociaux; de tels espaces sociaux sont cependant difficiles à modéliser et ils sont d'une utilisation limitée dans le contexte d'interactions homme-robot où l'intrusion dans les espaces sociaux est nécessaire. Ce travail présente une nouvelle approche pour la planification de mouvements dans un contexte social qui permet de gérer des environnements complexes ainsi que des situation d'interaction homme-robot. Plus précisément, le concept d'attention est utilisé pour modéliser comment l'influence de l'environnement dans son ensemble affecte la manière dont le mouvement du robot est perçu par les personnes environnantes. Un nouveau modèle attentionnel est introduit qui estime comment nos ressources attentionnelles sont partagées entre les éléments saillants de notre environnement. Basé sur ce modèle, nous introduisons le concept de champ attentionnel. Un planificateur de mouvement est ensuite développé qui s'appuie sur le champ attentionnel afin de produire des mouvements socialement acceptables. Notre planificateur de mouvement est capable d'optimiser simultanément plusieurs objectifs tels que la sécurité, l'efficacité et le confort des mouvements. Les capacités de l'approche proposée sont illustrées sur plusieurs scénarios simulés dans lesquels le robot est assigné différentes tâches. Lorsque la tâche du robot consiste à naviguer dans l'environnement sans causer de distraction, notre approche produit des résultats prometteurs même dans des situations complexes. Aussi, lorsque la tâche consiste à attirer l'attention d'une personne en vue d'interagir avec elle, notre planificateur de mouvement est capable de choisir automatiquement une destination qui exprime au mieux son désir d'interagir, tout en produisant un mouvement sûr, efficace et confortable.


Human Robotics

Human Robotics
Author: Etienne Burdet
Publisher: MIT Press
Total Pages: 291
Release: 2013-09-13
Genre: Science
ISBN: 0262314827

Download Human Robotics Book in PDF, ePub and Kindle

A synthesis of biomechanics and neural control that draws on recent advances in robotics to address control problems solved by the human sensorimotor system. This book proposes a transdisciplinary approach to investigating human motor control that synthesizes musculoskeletal biomechanics and neural control. The authors argue that this integrated approach—which uses the framework of robotics to understand sensorimotor control problems—offers a more complete and accurate description than either a purely neural computational approach or a purely biomechanical one. The authors offer an account of motor control in which explanatory models are based on experimental evidence using mathematical approaches reminiscent of physics. These computational models yield algorithms for motor control that may be used as tools to investigate or treat diseases of the sensorimotor system and to guide the development of algorithms and hardware that can be incorporated into products designed to assist with the tasks of daily living. The authors focus on the insights their approach offers in understanding how movement of the arm is controlled and how the control adapts to changing environments. The book begins with muscle mechanics and control, progresses in a logical manner to planning and behavior, and describes applications in neurorehabilitation and robotics. The material is self-contained, and accessible to researchers and professionals in a range of fields, including psychology, kinesiology, neurology, computer science, and robotics.


Motion and Operation Planning of Robotic Systems

Motion and Operation Planning of Robotic Systems
Author: Giuseppe Carbone
Publisher: Springer
Total Pages: 520
Release: 2015-03-12
Genre: Technology & Engineering
ISBN: 3319147056

Download Motion and Operation Planning of Robotic Systems Book in PDF, ePub and Kindle

This book addresses the broad multi-disciplinary topic of robotics, and presents the basic techniques for motion and operation planning in robotics systems. Gathering contributions from experts in diverse and wide ranging fields, it offers an overview of the most recent and cutting-edge practical applications of these methodologies. It covers both theoretical and practical approaches, and elucidates the transition from theory to implementation. An extensive analysis is provided, including humanoids, manipulators, aerial robots and ground mobile robots. ‘Motion and Operation Planning of Robotic Systems’ addresses the following topics: *The theoretical background of robotics. *Application of motion planning techniques to manipulators, such as serial and parallel manipulators. *Mobile robots planning, including robotic applications related to aerial robots, large scale robots and traditional wheeled robots. *Motion planning for humanoid robots. An invaluable reference text for graduate students and researchers in robotics, this book is also intended for researchers studying robotics control design, user interfaces, modelling, simulation, sensors, humanoid robotics.