Homogeneous Turbulence Dynamics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Homogeneous Turbulence Dynamics PDF full book. Access full book title Homogeneous Turbulence Dynamics.

Homogeneous Turbulence Dynamics

Homogeneous Turbulence Dynamics
Author: Pierre Sagaut
Publisher: Springer
Total Pages: 897
Release: 2018-03-23
Genre: Science
ISBN: 3319731629

Download Homogeneous Turbulence Dynamics Book in PDF, ePub and Kindle

This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obtained in different research communities. Mathematical tools and advanced physical models are detailed in dedicated chapters.


The Theory of Homogeneous Turbulence

The Theory of Homogeneous Turbulence
Author: G. K. Batchelor
Publisher: Cambridge University Press
Total Pages: 216
Release: 1953
Genre: Mathematics
ISBN: 9780521041171

Download The Theory of Homogeneous Turbulence Book in PDF, ePub and Kindle

This is a reissue of Professor Batchelor's text on the theory of turbulent motion, which was first published by Cambridge Unviersity Press in 1953. It continues to be widely referred to in the professional literature of fluid mechanics, but has not been available for several years. This classic account includes an introduction to the study of homogeneous turbulence, including its mathematic representation and kinematics. Linear problems, such as the randomly-perturbed harmonic oscillator and turbulent flow through a wire gauze, are then treated. The author also presents the general dynamics of decay, universal equilibrium theory, and the decay of energy-containing eddies. There is a renewed interest in turbulent motion, which finds applications in atmospheric physics, fluid mechanics, astrophysics, and planetary science.


Turbulent Flows

Turbulent Flows
Author: Jean Piquet
Publisher: Springer Science & Business Media
Total Pages: 767
Release: 2013-04-17
Genre: Technology & Engineering
ISBN: 3662035596

Download Turbulent Flows Book in PDF, ePub and Kindle

obtained are still severely limited to low Reynolds numbers (about only one decade better than direct numerical simulations), and the interpretation of such calculations for complex, curved geometries is still unclear. It is evident that a lot of work (and a very significant increase in available computing power) is required before such methods can be adopted in daily's engineering practice. I hope to l"Cport on all these topics in a near future. The book is divided into six chapters, each· chapter in subchapters, sections and subsections. The first part is introduced by Chapter 1 which summarizes the equations of fluid mechanies, it is developed in C~apters 2 to 4 devoted to the construction of turbulence models. What has been called "engineering methods" is considered in Chapter 2 where the Reynolds averaged equations al"C established and the closure problem studied (§1-3). A first detailed study of homogeneous turbulent flows follows (§4). It includes a review of available experimental data and their modeling. The eddy viscosity concept is analyzed in §5 with the l"Csulting ~alar-transport equation models such as the famous K-e model. Reynolds stl"Css models (Chapter 4) require a preliminary consideration of two-point turbulence concepts which are developed in Chapter 3 devoted to homogeneous turbulence. We review the two-point moments of velocity fields and their spectral transforms (§ 1), their general dynamics (§2) with the particular case of homogeneous, isotropie turbulence (§3) whel"C the so-called Kolmogorov's assumptions are discussed at length.


Turbulence in Fluids

Turbulence in Fluids
Author: Marcel Lesieur
Publisher: Springer Science & Business Media
Total Pages: 593
Release: 2008-03-26
Genre: Technology & Engineering
ISBN: 1402064357

Download Turbulence in Fluids Book in PDF, ePub and Kindle

Now in its fully updated fourth edition, this leading text in its field is an exhaustive monograph on turbulence in fluids in its theoretical and applied aspects. The authors examine a number of advanced developments using mathematical spectral methods, direct-numerical simulations, and large-eddy simulations. The book remains a hugely important contribution to the literature on a topic of great importance for engineering and environmental applications, and presents a very detailed presentation of the field.


Navier-Stokes Turbulence

Navier-Stokes Turbulence
Author: Wolfgang Kollmann
Publisher: Springer Nature
Total Pages: 848
Release: 2024
Genre: Navier-Stokes equations
ISBN: 3031595785

Download Navier-Stokes Turbulence Book in PDF, ePub and Kindle

This updated/augmented second edition retains it class-tested content and pedagogy as a core text for graduate courses in advanced fluid mechanics and applied science. The new edition adds revised sections, clarification, problems, and chapter extensions including a rewritten section on Schauder bases for turbulent pipe flow, coverage of Cantwell’s mixing length closure for turbulent pipe flow, and a section on the variational Hessian. Consisting of two parts, the first provides an introduction and general theory of fully developed turbulence, where treatment of turbulence is based on the linear functional equation derived by E. Hopf governing the characteristic functional that determines the statistical properties of a turbulent flow. In this section, Professor Kollmann explains how the theory is built on divergence free Schauder bases for the phase space of the turbulent flow and the space of argument vector fields for the characteristic functional. The second segment, presented over subsequent chapters, is devoted to mapping methods, homogeneous turbulence based upon the hypotheses of Kolmogorov and Onsager, intermittency, structural features of turbulent shear flows and their recognition. Adds section on Plancherel’s theorem and a detailed problem on analytic solution of functional differential equations; Extends chapter nine on characteristic functionals to greater explain the role of convection; Reinforces concepts with problems on the theory and particular examples of turbulent flows such as periodic pipe flow. . .


Turbulence in Fluids

Turbulence in Fluids
Author: Marcel Lesieur
Publisher: Springer Science & Business Media
Total Pages: 435
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 9400905335

Download Turbulence in Fluids Book in PDF, ePub and Kindle

Turbulence is a dangerous topic which is often at the origin of serious fights in the scientific meetings devoted to it since it represents extremely different points of view, all of which have in common their complexity, as well as an inability to solve the problem. It is even difficult to agree on what exactly is the problem to be solved. Extremely schematically, two opposing points of view have been advocated during these last ten years: the first one is "statistical", and tries to model the evolution of averaged quantities of the flow. This com has followed the glorious trail of Taylor and Kolmogorov, munity, which believes in the phenomenology of cascades, and strongly disputes the possibility of any coherence or order associated to turbulence. On the other bank of the river stands the "coherence among chaos" community, which considers turbulence from a purely deterministic po int of view, by studying either the behaviour of dynamical systems, or the stability of flows in various situations. To this community are also associated the experimentalists who seek to identify coherent structures in shear flows.


Thermofluid Dynamics of Turbulent Flows

Thermofluid Dynamics of Turbulent Flows
Author: Michele Ciofalo
Publisher: Springer Nature
Total Pages: 194
Release: 2021-08-16
Genre: Technology & Engineering
ISBN: 303081078X

Download Thermofluid Dynamics of Turbulent Flows Book in PDF, ePub and Kindle

The book provides the theoretical fundamentals on turbulence and a complete overview of turbulence models, from the simplest to the most advanced ones including Direct and Large Eddy Simulation. It mainly focuses on problems of modeling and computation, and provides information regarding the theory of dynamical systems and their bifurcations. It also examines turbulence aspects which are not treated in most existing books on this subject, such as turbulence in free and mixed convection, transient turbulence and transition to turbulence. The book adopts the tensor notation, which is the most appropriate to deal with intrinsically tensor quantities such as stresses and strain rates, and for those who are not familiar with it an Appendix on tensor algebra and tensor notation are provided.


The Structure of Turbulent Shear Flow

The Structure of Turbulent Shear Flow
Author: A. A. R. Townsend
Publisher: Cambridge University Press
Total Pages: 450
Release: 1976
Genre: Mathematics
ISBN: 9780521298193

Download The Structure of Turbulent Shear Flow Book in PDF, ePub and Kindle

Develops a physical theory from the mass of experimental results, with revisions to reflect advances of recent years.


Turbulence

Turbulence
Author: Christophe Bailly
Publisher: Springer
Total Pages: 375
Release: 2015-03-21
Genre: Technology & Engineering
ISBN: 3319161601

Download Turbulence Book in PDF, ePub and Kindle

This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3 and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarkable digital techniques current and experimental. Many results are presented in a practical way, based on both experiments and numerical simulations. The book is written for a advanced engineering students as well as postgraduate engineers and researchers. For students, it contains the essential results as well as details and demonstrations whose oral transmission is often tedious. At a more advanced level, the text provides numerous references which allow readers to find quickly further study regarding their work and to acquire a deeper knowledge on topics of interest.


The Statistical Dynamics of Turbulence

The Statistical Dynamics of Turbulence
Author: Jovan Jovanovic
Publisher: Springer Science & Business Media
Total Pages: 145
Release: 2013-03-09
Genre: Technology & Engineering
ISBN: 3662104113

Download The Statistical Dynamics of Turbulence Book in PDF, ePub and Kindle

This short but complicated book is very demanding of any reader. The scope and style employed preserve the nature of its subject: the turbulence phe nomena in gas and liquid flows which are believed to occur at sufficiently high Reynolds numbers. Since at first glance the field of interest is chaotic, time-dependent and three-dimensional, spread over a wide range of scales, sta tistical treatment is convenient rather than a description of fine details which are not of importance in the first place. When coupled to the basic conserva tion laws of fluid flow, such treatment, however, leads to an unclosed system of equations: a consequence termed, in the scientific community, the closure problem. This is the central and still unresolved issue of turbulence which emphasizes its chief peculiarity: our inability to do reliable predictions even on the global flow behavior. The book attempts to cope with this difficult task by introducing promising mathematical tools which permit an insight into the basic mechanisms involved. The prime objective is to shed enough light, but not necessarily the entire truth, on the turbulence closure problem. For many applications it is sufficient to know the direction in which to go and what to do in order to arrive at a fast and practical solution at minimum cost. The book is not written for easy and attractive reading.