High Q Low Impedance Mems Resonators PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download High Q Low Impedance Mems Resonators PDF full book. Access full book title High Q Low Impedance Mems Resonators.

High-Q Low-Impedance MEMS Resonators

High-Q Low-Impedance MEMS Resonators
Author: Li-Wen Hung
Publisher:
Total Pages: 302
Release: 2011
Genre:
ISBN:

Download High-Q Low-Impedance MEMS Resonators Book in PDF, ePub and Kindle

The ever increasing need for regional and global roaming together with continuous advances in wireless communication standards continue to push future transceivers towards an ability to support multi-mode operation with minimal increases in cost, hardware complexity, and power consumption. RF channel-select filter banks pose a particularly attractive method for achieving multiband reconfigurability, since they not only provide the needed front-end reconfigurability, but also allow for power efficient and versatile transceiver designs, e.g., software-defined radio. Such channel-select filters, however, impose requirements on their constituent resonators that are not yet achievable on the micro-scale. Specifically, capacitively-transduced micromechanical resonators achieve high Q, but suffer from high impedance; while piezoelectric micromechanical resonators offer low impedance, but with insufficient Q. This dissertation demonstrates four new techniques to address the issues in both technologies. Two of the methods recognize that sub-30 nm gap spacing enables electrostatic resonators to achieve acceptably low impedance. Unfortunately, however, such small gaps with the needed high aspect ratios are difficult to achieve via wafer-level batch processing. Two new methods are proposed and experimentally verified for forming sub-30 nm gaps: 1) partial-filling of electrode-to-resonator gaps with atomic layer deposition (ALD) of high-k dielectric; and 2) generating gaps via the volume reduction associated with a silicidation reaction. Among the many benefits provided by a silicide-based approach to gap formation is speed of release, where sub-30 nm gaps can be formed and high-aspect-ratio microstructures can be released via anneals lasting from seconds to a few minutes, regardless the lateral dimensions of the devices. Silicide-induced gap formation further does not require any etching and is applicable to a wide range of applications, from electronics to vacuum packaging. The next two methods seek to circumvent the fact that AlN thin-film resonators have historically been measured with much lower Q than capacitive ones at similar frequencies. As a result, it was commonly accepted that the AlN thin films sputtered at low temperatures are to blame for the lower Q. This dissertation provides experimental evidence that it is not AlN material loss that restricts the Q of conventional AlN resonators, but rather the losses associated with their contacting electrodes. Specifically, a new transducer dubbed the "capacitive-piezoelectric" transducer is introduced that lifts the electrodes away from a piezoelectric resonator by tiny nanometer scale gaps that retain strong electric fields for good electromechanical coupling, while eliminating electrode-derived losses. After removing the electrode losses, the Q of piezoelectric AlN resonators rise by up to 9 times. A new surface-micromachining fabrication process has been developed for the capacitive-piezoelectric resonators, where the metal electrodes are separated from the AlN resonators by small air (or vacuum) gaps. The second approach for tapping the material Q of AlN uses Q-boosting mechanical circuits, where the electrode-equipped AlN resonators are mechanically coupled to electrode-less ones to form a composite-array. In this structure, the energy shared among all of the resonators in the composite-array effectively boost the Q of the electrode-equipped resonators. The Q of electrode-less resonators are extrapolated from the measurement data to be from 14,040 to 15,795. Both methods achieve measured Q exceeding 10,000, posting the highest reported Q for resonators constructed of sputtered AlN and confirming that AlN is indeed a high-Q material.


Piezoelectric MEMS Resonators

Piezoelectric MEMS Resonators
Author: Harmeet Bhugra
Publisher: Springer
Total Pages: 423
Release: 2017-01-09
Genre: Technology & Engineering
ISBN: 3319286889

Download Piezoelectric MEMS Resonators Book in PDF, ePub and Kindle

This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associated with testing and qualification Examples of commercialization paths for piezoelectric MEMS resonators in the timing and the filter markets ...and more! The authors present industry and academic perspectives, making this book ideal for engineers, graduate students, and researchers.


MEMS

MEMS
Author: Vikas Choudhary
Publisher: CRC Press
Total Pages: 478
Release: 2017-12-19
Genre: Medical
ISBN: 1466515821

Download MEMS Book in PDF, ePub and Kindle

The microelectromechanical systems (MEMS) industry has experienced explosive growth over the last decade. Applications range from accelerometers and gyroscopes used in automotive safety to high-precision on-chip integrated oscillators for reference generation and mobile phones. MEMS: Fundamental Technology and Applications brings together groundbreaking research in MEMS technology and explores an eclectic set of novel applications enabled by the technology. The book features contributions by top experts from industry and academia from around the world. The contributors explain the theoretical background and supply practical insights on applying the technology. From the historical evolution of nano micro systems to recent trends, they delve into topics including: Thin-film integrated passives as an alternative to discrete passives The possibility of piezoelectric MEMS Solutions for MEMS gyroscopes Advanced interconnect technologies Ambient energy harvesting Bulk acoustic wave resonators Ultrasonic receiver arrays using MEMS sensors Optical MEMS-based spectrometers The integration of MEMS resonators with conventional circuitry A wearable inertial and magnetic MEMS sensor assembly to estimate rigid body movement patterns Wireless microactuators to enable implantable MEMS devices for drug delivery MEMS technologies for tactile sensing and actuation in robotics MEMS-based micro hot-plate devices Inertial measurement units with integrated wireless circuitry to enable convenient, continuous monitoring Sensors using passive acousto-electric devices in wired and wireless systems Throughout, the contributors identify challenges and pose questions that need to be resolved, paving the way for new applications. Offering a wide view of the MEMS landscape, this is an invaluable resource for anyone working to develop and commercialize MEMS applications.


Thin-film Encapsulation of High Frequency MEMS Resonator for RF Applications

Thin-film Encapsulation of High Frequency MEMS Resonator for RF Applications
Author: Kuan-Lin Chen
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Thin-film Encapsulation of High Frequency MEMS Resonator for RF Applications Book in PDF, ePub and Kindle

Wireless communication has greatly impacted our daily life since the first radio system was invented. Applications, such as cellular phone, satellite television, GPS navigation, and wireless Internet network, are driving the development of RF components to the direction of being smaller, cheaper and more power saving and therefore this topic has been one of the hottest research areas in MEMS field. MEMS resonators have a great potential for replacing conventional resonators used in portable wireless applications because of their merits of small size, high quality factor (Q), and low power consumption. There are also great interests in using coupled micro-resonators as band-pass filters and many research groups have already got exciting results. However, high motional impedance still remains a big obstacle for commercialization of MEMS resonators in RF applications. Despite the advance of device performance, packaging for MEMS resonators remains a critical challenge. Because of their extreme sensitivity to the environment, MEMS resonators need a vacuum packaging to achieve high quality factors (Q) and enable post-MEMS CMOS integration. The promising on-chip application also requires a CMOS compatible packaging process. Due to the stringent RF requirement, electrical properties and hermiticity of packaging are also very important. This work aims to provide a solution for a practical RF MEMS resonator that has low impedance as well as a reliable packaging. First, this work presents a thorough study of a wafer-level epitaxial silicon encapsulation process in making RF MEMS resonators. The epitaxial silicon encapsulation process developed at Stanford University has been proven to have high mechanical robustness and it provides a low-pressure environment to resonating structures. The transmission loss of silicon interconnect was measured at RF ranges in this work. The transmission loss was also modeled for device designers to simulate the interconnect properties at the design phase. Secondly, a 200 MHz width-extensional mode dielectrically-driven resonator is presented. High-k dielectric material was used to enhance the transduction and reduce the motional impedance. A modified encapsulation process was developed to package the resonator. The resonator was demonstrated to have high Q in the package. In addition, this work presents an integrated solution for wafer-level packaging and electrostatic actuation of out-of-plane RF MEMS resonators. By integrating the electrodes into the epitaxial-grown silicon layer, both the encapsulation and the out-of-plane actuation can be built in one process step, which results in an ultra-compact and robust packaging. First, designs and fabrication processes of the out-of-plane electrode are described. The mechanical and electrical properties of the electrode are discussed, modeled and characterized. A 200 kHz torsional mode beam resonator and a 12 MHz transverse-mode differential square plate resonator were fabricated using this packaging method and their performances are presented and discussed. This work also presents a 13 MHz mechanically coupled filter that is encapsulated using the same integration process.


Micro-Resonators: The Quest for Superior Performance

Micro-Resonators: The Quest for Superior Performance
Author: Reza Abdolvand
Publisher: MDPI
Total Pages: 147
Release: 2019-02-15
Genre:
ISBN: 3038976261

Download Micro-Resonators: The Quest for Superior Performance Book in PDF, ePub and Kindle

This book is a printed edition of the Special Issue "Micro-Resonators: The Quest for Superior Performance" that was published in Micromachines


Resonant MEMS

Resonant MEMS
Author: Oliver Brand
Publisher: John Wiley & Sons
Total Pages: 512
Release: 2015-06-08
Genre: Technology & Engineering
ISBN: 3527335455

Download Resonant MEMS Book in PDF, ePub and Kindle

Part of the AMN book series, this book covers the principles, modeling and implementation as well as applications of resonant MEMS from a unified viewpoint. It starts out with the fundamental equations and phenomena that govern the behavior of resonant MEMS and then gives a detailed overview of their implementation in capacitive, piezoelectric, thermal and organic devices, complemented by chapters addressing the packaging of the devices and their stability. The last part of the book is devoted to the cutting-edge applications of resonant MEMS such as inertial, chemical and biosensors, fluid properties sensors, timing devices and energy harvesting systems.


MEMS Sensors and Resonators

MEMS Sensors and Resonators
Author: Frederic Nabki
Publisher: MDPI
Total Pages: 164
Release: 2020-05-27
Genre: Technology & Engineering
ISBN: 3039288652

Download MEMS Sensors and Resonators Book in PDF, ePub and Kindle

Microelectromechanical systems (MEMS) have had a profound impact on a wide range of applications. The degree of miniaturization made possible by MEMS technology has significantly improved the functionalities of many systems, and the performance of MEMS has steadily improved as its uses augment. Notably, MEMS sensors have been prevalent in motion sensing applications for decades, and the sensing mechanisms leveraged by MEMS have been continuously extended to applications spanning the detection of gases, magnetic fields, electromagnetic radiation, and more. In parallel, MEMS resonators have become an emerging field of MEMS and affected subfields such as electronic timing and filtering, and energy harvesting. They have, in addition, enabled a wide range of resonant sensors. For many years now, MEMS have been the basis of various industrial successes, often building on novel academic research. Accordingly, this Special Issue explores many research innovations in MEMS sensors and resonators, from biomedical applications to energy harvesting, gas sensing, resonant sensing, and timing.


Capacitive Silicon Resonators

Capacitive Silicon Resonators
Author: Nguyen Van Toan
Publisher: CRC Press
Total Pages: 170
Release: 2019-07-10
Genre: Technology & Engineering
ISBN: 0429560990

Download Capacitive Silicon Resonators Book in PDF, ePub and Kindle

Microfabricated resonators play an essential role in a variety of applications, including mass sensing, timing reference applications, and filtering applications. Many transduction mechanisms including piezoelectric, piezoresistive, and capacitive mechanisms, have been studied to induce and detect the motion of resonators. This book is meant to introduce and suggest several technological approaches together with design considerations for performance enhancement of capacitive silicon resonators, and will be useful for those working in field of micro and nanotechnology. Features Introduces and suggests several technological approaches together with design considerations for performance enhancement of capacitive silicon resonators Provides information on the various fabrication technologies and design considerations that can be employed to improve the performance capacitive silicon resonator which is one of the promising options to replace the quartz crystal resonator. Discusses several technological approaches including hermetic packaging based on the LTCC substrate, deep reactive ion etching, neutral beam etching technology, and metal-assisted chemical etching, as well as design considerations for mechanically coupled, selective vibration of high-order mode, movable electrode structures, and piezoresistive heat engines were investigated to achieve small motional resistance, low insertion loss, and high quality factor. Focusses on a capacitive sensing method based on the measurement of the change in capacitance between a sensing electrode and the resonant body. Reviews recent progress in performance enhancement methods for capacitive silicon resonator, which are mainly based on the works of the authors.


Microelectromechanical Systems and Devices

Microelectromechanical Systems and Devices
Author: Nazmul Islam
Publisher: BoD – Books on Demand
Total Pages: 496
Release: 2012-03-28
Genre: Science
ISBN: 9535103067

Download Microelectromechanical Systems and Devices Book in PDF, ePub and Kindle

The advances of microelectromechanical systems (MEMS) and devices have been instrumental in the demonstration of new devices and applications, and even in the creation of new fields of research and development: bioMEMS, actuators, microfluidic devices, RF and optical MEMS. Experience indicates a need for MEMS book covering these materials as well as the most important process steps in bulk micro-machining and modeling. We are very pleased to present this book that contains 18 chapters, written by the experts in the field of MEMS. These chapters are groups into four broad sections of BioMEMS Devices, MEMS characterization and micromachining, RF and Optical MEMS, and MEMS based Actuators. The book starts with the emerging field of bioMEMS, including MEMS coil for retinal prostheses, DNA extraction by micro/bio-fluidics devices and acoustic biosensors. MEMS characterization, micromachining, macromodels, RF and Optical MEMS switches are discussed in next sections. The book concludes with the emphasis on MEMS based actuators.