High Performance Concrete Bridge Deck Investigation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download High Performance Concrete Bridge Deck Investigation PDF full book. Access full book title High Performance Concrete Bridge Deck Investigation.

High performance concrete bridge deck investigation

High performance concrete bridge deck investigation
Author: Benjamin A. Graybeal
Publisher:
Total Pages: 4
Release: 2009
Genre: Bridges
ISBN:

Download High performance concrete bridge deck investigation Book in PDF, ePub and Kindle

This document is a technical summary of the unpublished Federal Highway Administration report, High Performance Concrete Bridge Deck Investigation, available only through the National Technical Information Service (NTIS). NTIS Accession No. of the report covered in this TechBrief: PB2009 115497. This TechBrief provides a summary of an investigation that assessed the performance of high performance concrete (HPC) bridge decks. HPC is a concrete designed to meet a performance specification. Many definitions of HPC have been proposed over the past 15 to 20 years; one to note is the definition proposed by Goodspeed and later expanded by Russell and Ozyildirim that offers a series of strength and durability related performance characteristics. It recommends that the desired performance of the concrete should be considered and that the performance characteristics should then be set accordingly. Example performance characteristics toward which concrete properties may be focused include chloride penetration, shrinkage, compressive strength, and freeze/ thaw deterioration resistance.


High Performance Concrete Bridge Deck Investigation

High Performance Concrete Bridge Deck Investigation
Author: David W. Mokarem
Publisher:
Total Pages: 724
Release: 2009
Genre: Bridges
ISBN:

Download High Performance Concrete Bridge Deck Investigation Book in PDF, ePub and Kindle

In 1993, the Federal Highway Administration (FHWA) initiated a national program to implement the use of high-performance concrete (HPC) in bridges. The program included the construction of demonstration bridges throughout the United States. The construction of these bridges has provided a large amount of data on the use of HPC. In addition, construction of these bridges provided opportunities to learn more about the placement and actual behavior of HPC in bridges. The overall objective of this project was to inspect, assess, and evaluate the in-service condition of those bridge decks.


High-Performance Concrete Bridge Decks: A Fast-Track Implementation Study, Volume 2: Materials

High-Performance Concrete Bridge Decks: A Fast-Track Implementation Study, Volume 2: Materials
Author: Mateusz Radlinski
Publisher: Purdue University Press
Total Pages: 254
Release: 2008-11-01
Genre: Transportation
ISBN: 9781622601097

Download High-Performance Concrete Bridge Decks: A Fast-Track Implementation Study, Volume 2: Materials Book in PDF, ePub and Kindle

The purpose of this research was to examine the applicability of ternary binder systems containing ordinary portland cement (OPC), class C fly ash (FA) and silica fume (SF) for bridge deck concrete. This was accomplished in two parts, the laboratory part and a field application part. During the laboratory studies, four ternary mixtures, each containing either 20% or 30% FA and either 5% or 7% SF were subjected to four different curing regimes (air drying, 7 days curing compound application and 3 or 7 days wet burlap curing). In general, all four ternary mixtures exhibited very good water and chloride solution transport-controlling properties (resistance to chloride-ion penetration, chloride diffusivity and rate of water absorption). However, it was concluded that in order to ensure adequate strength, good freezing and thawing resistance, satisfactory resistance to salt scaling, and adequate shrinkage cracking resistance the FA content should not exceed 20%, SF content should not exceed 5% (by total mass of binder) and paste content should be kept below 24% by volume of concrete. Further, wet burlap curing for a minimum of 3 days was required to achieve satisfactory performance and to obtain a reliable assessment of in-situ compressive strength (up to 28 days) using maturity method. The second part of this research examined the performance of ternary concrete containing 20% FA and 5% SF in the pilot HPC bridge deck constructed in northern Indiana. Using maturity method developed for the purpose of this study, it was determined that the unexpectedly high RCP values of concrete placed late in the construction season were mostly attributed to low ambient temperature. Additional applications of the developed maturity method were also demonstrated. These include assessment of risk of scaling and reduction in time to corrosion initiation as a function of construction date, as well as estimation of long-term RCP values of concrete subjected to accelerated curing.


High-Performance Concrete Bridge Decks: A Fast-Track Implementation Study, Volume 1: Structural Behavior

High-Performance Concrete Bridge Decks: A Fast-Track Implementation Study, Volume 1: Structural Behavior
Author: Robert J. Frosch
Publisher: Purdue University Press
Total Pages: 178
Release: 2008-11-01
Genre: Transportation
ISBN: 9781622601080

Download High-Performance Concrete Bridge Decks: A Fast-Track Implementation Study, Volume 1: Structural Behavior Book in PDF, ePub and Kindle

Transverse cracking of concrete bridge decks is problematic in numerous states. Cracking has been identified in the negative and positive moment regions of bridges and can appear shortly after opening the structure to live loads. To improve the service life of the bridge deck as well as decrease maintenance costs, changes to current construction practices in Indiana are being considered. A typical bridge deck was instrumented which incorporated the following: increased reinforcement amounts, decreasing reinforcement spacing, and high-performance, low-shrinkage concrete. The low shrinkage concrete was achieved using a ternary concrete mix. The objective of this research was to determine the performance, particularly in terms of transverse cracking and shrinkage, of a bridge incorporating design details meant to reduce cracking. Based on measurements from the bridge, it was determined that maximum tensile strains experienced in the concrete were not sufficient to initiate cracking. An on-site inspection was performed to confirm that cracking had not initiated. The data was analyzed and compared with the behavior of a similarly constructed bridge built with nearly identical reinforcing details, but with a more conventional concrete to evaluate the effect of the HPC. Based on this study, it was observed that full-depth transverse cracks did not occur in the structure and that the use of HPC lowered the magnitude of restrained shrinkage strains and resulting tensile stresses.


Documentation of the INDOT Experience and Construction of the Bridge Decks

Documentation of the INDOT Experience and Construction of the Bridge Decks
Author: Timothy Barrett
Publisher:
Total Pages:
Release: 2015-09-01
Genre:
ISBN: 9781622603527

Download Documentation of the INDOT Experience and Construction of the Bridge Decks Book in PDF, ePub and Kindle

The Indiana Department of Transportation (INDOT) constructed four bridge decks utilizing internally cured, high performance concrete (IC HPC) during the summer of 2013. These decks implement research findings from the research presented in the FHWA/IN/JTRP-2010/10 report where internal curing was proposed as one method to reduce the potential for shrinkage cracking, leading to improved durability. The objective of this research was to document the construction of the four IC HPC bridge decks that were constructed in Indiana during 2013 and quantify the properties and performance of these decks. This report contains documentation of the production and construction of IC HPC concrete for the four bridge decks in this study. In addition, samples of the IC HPC used in construction were compared with a reference high performance concrete (HPC) which did not utilize internal curing. These samples were transported to the laboratory where the mechanical properties, resistance to chloride migration, and potential for shrinkage and cracking was assessed. Using experimental results and mixture proportions, the diffusion based service life of the bridge decks was able to be estimated. Collectively, the results indicate that the IC HPC mixtures that were produced as a part of this study exhibit the potential to more than triple the service life of the typical bridge deck in Indiana while reducing the early age autogenous shrinkage by more than 80% compared to non-internally cured concretes.


Concrete Bridge Deck Performance

Concrete Bridge Deck Performance
Author: H. G. Russell
Publisher: Transportation Research Board
Total Pages: 188
Release: 2004
Genre: Bridges
ISBN: 0309070112

Download Concrete Bridge Deck Performance Book in PDF, ePub and Kindle

At head of title: National Cooperative Highway Research Program.


Numerical Analysis and Experimental Investigation of Ultra-high-performance Concrete Hybrid Bridge Deck Connections

Numerical Analysis and Experimental Investigation of Ultra-high-performance Concrete Hybrid Bridge Deck Connections
Author: Sabreena Nasrin
Publisher:
Total Pages: 284
Release: 2019
Genre: Concrete bridges
ISBN:

Download Numerical Analysis and Experimental Investigation of Ultra-high-performance Concrete Hybrid Bridge Deck Connections Book in PDF, ePub and Kindle

In recent years, the use of modular bridge deck components has gained popularity for facilitating more durable components in bridge decks, but these components require field-applied connections for constructing the entire bridge. Ultra-High-Performance Concrete (UHPC) is being extensively used for highway bridges in the field connections between girders and deck panels for its superior quality than conventional concrete.Thus far, very limited data is available on the modeling of hybrid-bridge deck connections. In this study, finite element models have been developed to identify the primary properties affecting the response of hybrid deck panel system under monotonic and reverse cyclic loads. The commercial software ABAQUS was used to validate the models and to generate the data presented herein. The concrete damage plasticity (CDP) model was used to simulate both the conventional concrete and UHPC. In addition, numerical results were validated against experimental data available in the literature. The key parameters studied were the mesh size, the dilation angle, reinforcement type, concrete constitutive models, steel properties, and the contact type between the UHPC and the conventional concrete. The models were found to capture the load-deformation response, failure modes, crack patterns and ductility indices satisfactorily. The damage in concrete under monotonic loading is found higher in normal concrete than UHPC with no signs of de-bonding between the two materials. It is observed that increasing the dilation angle leads to an increase in the initial stiffness of the model. Changing the dilation angle from 20℗ʻ to 40℗ʻ results in an increase of 7.81% in ultimate load for the panel with straight reinforcing bars, whereas for the panel with headed bars, the increase in ultimate load was found 8.56 %.Furthermore, four different types of bridge deck panels were simulated under reversed cyclic loading to observe overall behavior and the damage pattern associated with the reversed cyclic load. The key parameters investigated were the configurations of steel connections between the precast concrete deck elements, the loading position, ductility index, and the failure phenomena. The headed bar connections were found to experience higher ductility than the ones with straight bars in the range of 10.12% to 30.70% in all loading conditions, which is crucial for ensuring safe structural performance. This numerical investigation provides recommendations for predicting the location of the local damage in UHPC concrete bridge deck precast panel connections under reversed cyclic loading.Despite of having excellent mechanical and material properties, the use of Ultra-High-Performance Fiber Reinforced Concrete (UHP-FRC) is not widespread due to its high cost and lack of widely accepted design guidelines. This research also aims to develop a UHPC mixture using locally and domestically available materials without heat curing in hopes of reducing the production cost. Several trial mixtures of UHPC have been developed using locally available basalt and domestically available steel fibers. Among them, one trial mixture of 20.35 ksi compressive strength was selected for further study. To investigate the applicability of this locally produced UHPC in bridge closure, two full scale-8 ft. span hybrid bridge deck slabs with UHPC closure were constructed and tested under monotonic loading to identify the structural and material responses. The load-deflection response of the hybrid connection confirms that the deflection increased linearly until the initiation of first crack, after that it increased non-linearly up to the failure of the connection. The strain response also confirms that UHPC experiences less strain than normal strength concrete under compression loading. In addition, a moment curvature analytical graphical user interface model of hybrid bridge deck connection has been developed using MATLAB to predict ductility, curvature, and the stress distributions in those connections. The predicted value of moment and curvature from the code was found in good agreement with experimental data as well. The code provides a tool to professional engineers to predict ductility, curvature, and the stress distributions in those connections. The code is built in such a way to allow various input parameters such as concrete strength, dimensions of hybrid connection and deck panels, reinforcement configuration and the shape of the connection.Though, ultra-high-performance fiber reinforced concrete (UHP-FRC) has very high compressive strength compared to conventional concrete, the failure strain of UHP-FRC is not enough to withstand large plastic deformations under high stain rate loading such as impact and blast loading. Hence, a numerical study has been conducted to simulate low-velocity impact phenomenon of UHP-FRC. The responses obtained from the numerical study are in good agreement with the experimental results under impact loads. Five different types of UHP-FRC beams were simulated under impact loading to observe the global and local material responses. The key parameters investigated were the reinforcement ratio (Ï1), impact load under various drop heights (h), and the failure phenomena. It was observed that higher reinforcement ratio showed better deflection recovery under the proposed impact. Also, for a specific reinforcement ratio, the maximum deflection increases approximately 15% when drop height decreases from 100 mm to 25 mm. Moreover, the applicability of concrete damage plasticity model for impact loading is investigated. The results also provided recommendations for predicting the location of the local damage in UHP-FRC beams under impact loading.Moreover, this research work includes a nonlinear finite element analysis of high-strength concrete confined with opposing circular spiral reinforcements. The spiral reinforcement is a very common technique used for reinforcing columns in active seismic regions due to its high ductility and high energy absorption. The results are compared with previously tested small-scale concrete columns made with the same technique under monotonic axial loads. The proposed technique is developed to improve the strength and ductility of concrete columns confined with conventional spiral systems. The finite element (FE) analysis results have shown that the proposed model can predict the failure load and crack pattern of columns with reasonable accuracy. Beside this, the concrete plasticity damage showed very good results in simulating columns with opposing spirals. The FE model is used to conduct a study on the effect of spiral spacing, Îđ (ratio of the core diameter to the whole cross section diameter) and compressive strength on the behavior of circular spiral reinforced concrete columns confined with opposing circular spiral reinforcements. The results of the parametric study demonstrated that for the same spacing between spirals and same strength of concrete, increasing Îđ increases the failure load of the column. It is also observed from the study that the ductility of the studied columns is not affected by changing the value of Îđ. In addition, a correlation between the Îđ factor, three different compressive concrete strengths, and the spacing of opposing spirals was developed in this study.


Long-term Performance of Polymer Concrete for Bridge Decks

Long-term Performance of Polymer Concrete for Bridge Decks
Author: David W. Fowler
Publisher: Transportation Research Board
Total Pages: 75
Release: 2011
Genre: Technology & Engineering
ISBN: 0309143543

Download Long-term Performance of Polymer Concrete for Bridge Decks Book in PDF, ePub and Kindle

TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 423: Long-Term Performance of Polymer Concrete for Bridge Decks addresses a number of topics related to thin polymer overlays (TPOs). Those topics include previous research, specifications, and procedures on TPOs; performance of TPOs based on field applications; the primary factors that influence TPO performance; current construction guidelines for TPOs related to surface preparation, mixing and placement, consolidation, finishing, and curing; repair procedures; factors that influence the performance of overlays, including life-cycle cost, benefits and costs, bridge deck condition, service life extension, and performance; and successes and failures of TPOs, including reasons for both.


Behavior of Ultra-high Performance Concrete Bridge Deck Panels Compared to Conventional Stay-in-place Deck Panels

Behavior of Ultra-high Performance Concrete Bridge Deck Panels Compared to Conventional Stay-in-place Deck Panels
Author: Valter Gora Venancio
Publisher:
Total Pages: 101
Release: 2016
Genre: Bridges
ISBN:

Download Behavior of Ultra-high Performance Concrete Bridge Deck Panels Compared to Conventional Stay-in-place Deck Panels Book in PDF, ePub and Kindle

"The remarkable features of ultra-high performance concrete (UHPC) have been reported. Its application in bridge construction has been an active research area in recent years, attributed to its higher compressive strength, higher ductility and reduced permeability when compared with conventional concrete and even high-strength concrete. Those characteristics are known to increase bridge durability and, consequently, decrease life-cycle maintenance costs. With that in mind, this study investigated the performance of UHPC stay-in-place (SIP) bridge deck panels subjected to high loads in both flexure and shear. The test matrix consisted of twelve (12) half-scale panels that were 4 feet long and 2 feet wide. The variable parameters that were studied included thickness (i.e., 2-in. and 3-in.) as well as non-discrete reinforcement type, including conventional mild reinforcement, welded wire mesh and no reinforcement (UHPC only). Control deck panels with conventional concrete (CC) were fabricated and tested to serve as a baseline for comparison. The results indicated that the UHPC panels had an improved performance compared to the conventional concrete panels. With respect to the panels tested in high shear loads, only the CC panel test resulted in a diagonal tension failure mode (i.e. traditional shear type failure). All of the other UHPC panels failed in flexure suggesting that the UHPC provided a high shear capacity. The results also showed a good correlation with selected empirical models. A cost study was also investigated. It was concluded that, even with the high difference between the prices per cubic yard of both concretes, the difference can be significantly lower when compared with the prices per ultimate load capacity"--Abstract, page iii.