High Order Harmonic Generation In Solids PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download High Order Harmonic Generation In Solids PDF full book. Access full book title High Order Harmonic Generation In Solids.

High-order Harmonic Generation In Solids

High-order Harmonic Generation In Solids
Author: Marcelo Ciappina
Publisher: World Scientific
Total Pages: 352
Release: 2024-06-11
Genre: Science
ISBN: 9811279578

Download High-order Harmonic Generation In Solids Book in PDF, ePub and Kindle

'High-order harmonics emerging from the interaction of strong laser fields with solid matter constitute a novel, highly sensitive tool for interrogating electronic structure and dynamics in solids. At the interface of attosecond physics and condensed matter physics, this book provides an excellent overview of the current state of the art.'Ferenc KrauszNobel Laureate in Physics, 2023High-order harmonic generation (HHG) in solids, the nonlinear upconversion of coherent radiation resulting from the interaction of a strong and short laser pulse with bulk matter, has come of age. Since the seminal experiments and theoretical developments, there has been a constant and vibrant interest in this topic. In this book, we invite experimental and theoretical experts in the field with the aim to summarize the progress made so far and propose new possibilities and prospects for the generation of high-order harmonics using solid samples. Nowadays, it is possible to engineer, both spatially and temporally with nanometric and attosecond resolution, the driven fields. This could bring solid HHG to the next exciting frontier as novel and fully tunable table-top coherent sources.


High-Order Harmonic Generation in Solihb

High-Order Harmonic Generation in Solihb
Author: Marcelo Ciappina
Publisher: World Scientific Publishing Company
Total Pages: 0
Release: 2024
Genre: Science
ISBN: 9789811279553

Download High-Order Harmonic Generation in Solihb Book in PDF, ePub and Kindle

"In this book, we invite experimental and theoretical experts in the field with the aim to summarize the progress made so far and propose new possibilities and prospects for the generation of high-order harmonics using solid samples"--


Advances in Solid State Lasers

Advances in Solid State Lasers
Author: Mikhail Grishin
Publisher: BoD – Books on Demand
Total Pages: 642
Release: 2010-02-01
Genre: Technology & Engineering
ISBN: 953761980X

Download Advances in Solid State Lasers Book in PDF, ePub and Kindle

Invention of the solid-state laser has initiated the beginning of the laser era. Performance of solid-state lasers improved amazingly during five decades. Nowadays, solid-state lasers remain one of the most rapidly developing branches of laser science and become an increasingly important tool for modern technology. This book represents a selection of chapters exhibiting various investigation directions in the field of solid-state lasers and the cutting edge of related applications. The materials are contributed by leading researchers and each chapter represents a comprehensive study reflecting advances in modern laser physics. Considered topics are intended to meet the needs of both specialists in laser system design and those who use laser techniques in fundamental science and applied research. This book is the result of efforts of experts from different countries. I would like to acknowledge the authors for their contribution to the book. I also wish to acknowledge Vedran Kordic for indispensable technical assistance in the book preparation and publishing.


Progress in Ultrafast Intense Laser Science XIV

Progress in Ultrafast Intense Laser Science XIV
Author: Kaoru Yamanouchi
Publisher: Springer
Total Pages: 291
Release: 2018-12-28
Genre: Science
ISBN: 303003786X

Download Progress in Ultrafast Intense Laser Science XIV Book in PDF, ePub and Kindle

This 14th volume in the PUILS series presents up-to-date reviews of advances in Ultrafast Intense Laser Science, an interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the rapid developments in ultrafast laser technologies. Each chapter begins with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and appeal of the respective subject matter; this is followed by reports on cutting-edge discoveries. This volume covers a broad range of topics from this interdisciplinary field, e.g. atoms and molecules interacting in intense laser fields, laser-induced filamentation, high-order harmonics generation, and high-intensity lasers and their applications.


Semiconductor Quantum Optics

Semiconductor Quantum Optics
Author: Mackillo Kira
Publisher: Cambridge University Press
Total Pages: 658
Release: 2011-11-17
Genre: Science
ISBN: 1139502514

Download Semiconductor Quantum Optics Book in PDF, ePub and Kindle

The emerging field of semiconductor quantum optics combines semiconductor physics and quantum optics, with the aim of developing quantum devices with unprecedented performance. In this book researchers and graduate students alike will reach a new level of understanding to begin conducting state-of-the-art investigations. The book combines theoretical methods from quantum optics and solid-state physics to give a consistent microscopic description of light-matter- and many-body-interaction effects in low-dimensional semiconductor nanostructures. It develops the systematic theory needed to treat semiconductor quantum-optical effects, such as strong light-matter coupling, light-matter entanglement, squeezing, as well as quantum-optical semiconductor spectroscopy. Detailed derivations of key equations help readers learn the techniques and nearly 300 exercises help test their understanding of the materials covered. The book is accompanied by a website hosted by the authors, containing further discussions on topical issues, latest trends and publications on the field. The link can be found at www.cambridge.org/9780521875097.


Nanoscale Photonic Imaging

Nanoscale Photonic Imaging
Author: Tim Salditt
Publisher: Springer Nature
Total Pages: 634
Release: 2020-06-09
Genre: Science
ISBN: 3030344134

Download Nanoscale Photonic Imaging Book in PDF, ePub and Kindle

This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.


Polarization Dependence of High Order Harmonic Generation from Solids in Reflection and Transmission Geometries

Polarization Dependence of High Order Harmonic Generation from Solids in Reflection and Transmission Geometries
Author: Erin Lynne Crites
Publisher:
Total Pages: 44
Release: 2020
Genre:
ISBN:

Download Polarization Dependence of High Order Harmonic Generation from Solids in Reflection and Transmission Geometries Book in PDF, ePub and Kindle

High harmonic generation (HHG) is a process that occurs when an intense laser interacts with a material and generates new frequencies of light. HHG has many practical applications, namely as a spectroscopy technique and source for high frequency light and attosecond pulses. While HHG has been done extensively in gases, HHG in solids is a relatively new field. Solids are appealing as an HHG medium as they require much simpler equipment and are subsequently much more compact, and thus may have a variety of applications previously inaccessible to gas-phase HHG. However, the generation mechanism of HHG in solids has not been fully characterized yet, as the processes behind HHG in gases and solids are not synonymous. Here, we study the influence of polarization, symmetry, and setup geometry on HHG in solids. We study the propagation effects in a transmission geometry setup and use Jones calculus to counteract the polarization change from propagation. We compare these results to a reflection geometry setup, which naturally does not have propagation effects, to determine the validity of the polarization correction technique. We also look at the electric field symmetry dependence on HHG through the manipulation of the laser electric field with a two-color interferometer. The impact of symmetry dependence and propagation effects both contribute to a better understanding of the HHG process in solids.


Optical Properties of Excited States in Solids

Optical Properties of Excited States in Solids
Author: Baldassare di Bartolo
Publisher: Springer Science & Business Media
Total Pages: 749
Release: 2012-12-06
Genre: Science
ISBN: 146153044X

Download Optical Properties of Excited States in Solids Book in PDF, ePub and Kindle

This book presents an account of the course "Optical Properties of Excited States in Solids" held in Erice, Italy, from June 16 to 3D, 1991. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Centre for Scientific Culture. The purpose of this course was to present physical models, mathematical formalisms and experimental techniques relevant to the optical properties of excited states in solids. Some active physical species, such as ions or radicals, could survive indefinitely if they were completely 'isolated in space. Other active species, such as excited molecular and solid-state systems, are inherently unstable, even in isolation, due to the spontaneous mechanisms that may convert their excitation energies into radiation or heat. Physical parameters that may be used to characterize these excited systems are the localization or delocalization, and the coherence or incoherence, of their state excitations. In solids the excited states, whether they are localized (as for impurities in insulators) or delocalized (as they may occur in semiconductors), are relevant in several regards. Their de-excitation is extremely sensitive to the nature of the excitations of the systems, and a study of the de-excitation processes can yield a variety of information. For example, the excited states may represent the initial condition of the onset of such processes as Stokes-shifted emission, hot luminescence, symmetry-dependent Jahn-Teller and scattering processes, tunneling processes, energy transfer to like and unlike centers, superradiance, coherent radiation, and excited state absorption.