High Integration Density Neural Interfaces For High Spatial Rrsolution Intracranial Eeg Monitoring PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download High Integration Density Neural Interfaces For High Spatial Rrsolution Intracranial Eeg Monitoring PDF full book. Access full book title High Integration Density Neural Interfaces For High Spatial Rrsolution Intracranial Eeg Monitoring.

High-Density Integrated Electrocortical Neural Interfaces

High-Density Integrated Electrocortical Neural Interfaces
Author: Sohmyung Ha
Publisher: Academic Press
Total Pages: 210
Release: 2019-08-03
Genre: Science
ISBN: 0128151161

Download High-Density Integrated Electrocortical Neural Interfaces Book in PDF, ePub and Kindle

High-Density Integrated Electrocortical Neural Interfaces provides a basic understanding, design strategies and implementation applications for electrocortical neural interfaces with a focus on integrated circuit design technologies. A wide variety of topics associated with the design and application of electrocortical neural implants are covered in this book. Written by leading experts in the field— Dr. Sohmyung Ha, Dr. Chul Kim, Dr. Patrick P. Mercier and Dr. Gert Cauwenberghs —the book discusses basic principles and practical design strategies of electrocorticography, electrode interfaces, signal acquisition, power delivery, data communication, and stimulation. In addition, an overview and critical review of the state-of-the-art research is included. These methodologies present a path towards the development of minimally invasive brain-computer interfaces capable of resolving microscale neural activity with wide-ranging coverage across the cortical surface. Written by leading researchers in electrocorticography in brain-computer interfaces Offers a unique focus on neural interface circuit design, from electrode to interface, circuit, powering, communication and encapsulation Covers the newest ECoG interface systems and electrode interfaces for ECoG and biopotential sensing


Silicon Integrated High-density Electrocortical and Retinal Neural Interfaces

Silicon Integrated High-density Electrocortical and Retinal Neural Interfaces
Author: Sohmyung Ha
Publisher:
Total Pages: 227
Release: 2016
Genre:
ISBN:

Download Silicon Integrated High-density Electrocortical and Retinal Neural Interfaces Book in PDF, ePub and Kindle

Recent interest and initiatives in brain research have driven a worldwide effort towards developing implantable neural interface systems with high spatiotemporal resolution and spatial coverage extending to the whole brain. Electrocorticography (ECoG) promises a minimally invasive, chronically implantable neural interface with resolution and spatial coverage capabilities that, when appropriately scaled, meet the needs of recently proposed brain initiatives. Current ECoG technologies, however, typically rely on cm-sized electrodes and wired operation, severely limiting their resolution and long-term use. The work presented here has advanced micro-electrocorticography (uECoG) technologies for wireless high-density cortical neural interfaces in two main directions: flexible active uECoG arrays; and modular fully integrated uECoG systems. This dissertation presents a systematic design methodology which addresses unique design challenges posed by the extreme densities, form factors and power budgets of these fully implantable neural interface systems, with experimental validation of their performance for neural signal acquisition, stimulation, and wireless powering and data communication. Notable innovations include 1) first demonstration of simultaneous wireless power and data telemetry at 6.78 Mbps data rate over a single 13.56 MHz inductive link; 2) integrated recording from a flexible active electrode ECoG array with 85 dB dynamic range at 7.7 nJ energy per 16-b sample; and 3) the first fully integrated and encapsulated wireless neural-interface-on-chip microsystem for non-contact neural sensing and energy-replenishing adiabatic stimulation delivering 145 uA current at 6 V compliance within 2.25 mm3 volume. In addition, the work presented here on advancing the resolution and coverage of neural interfaces extends further from the cortex to the retina. Despite considerable advances in retinal prostheses over the last two decades, the resolution of restored vision has remained severely limited, well below the 20/200 acuity threshold of blindness. Towards drastic improvements in spatial resolution, this dissertation presents a scalable architecture for retinal prostheses in which each stimulation electrode is directly activated by incident light and powered by a common voltage pulse transferred over a single wireless inductive link. The hybrid optical addressability and electronic powering scheme provides for separate spatial and temporal control over stimulation, and further provides optoelectronic gain for substantially lower light intensity thresholds than other optically addressed retinal prostheses using passive microphotodiode arrays. The architecture permits the use of high-density electrode arrays with ultra-high photosensitive silicon nanowires, obviating the need for excessive wiring and high-throughput data telemetry. Instead, the single inductive link drives the entire array of electrodes through two wires and provides external control over waveform parameters for the common voltage stimulation. A complete system comprising inductive telemetry link, stimulation pulse demodulator, charge-balancing series capacitor, and nanowire-based electrode device is integrated and validated ex vivo on rat retina tissue. Measurements demonstrate control over retinal neural activity both by light and electrical bias, validating the feasibility of the proposed architecture and its system components as an important first step towards a high-resolution optically addressed retinal prosthesis.


Neural Interface Engineering

Neural Interface Engineering
Author: Liang Guo
Publisher: Springer Nature
Total Pages: 436
Release: 2020-05-04
Genre: Technology & Engineering
ISBN: 3030418545

Download Neural Interface Engineering Book in PDF, ePub and Kindle

This book provides a comprehensive reference to major neural interfacing technologies used to transmit signals between the physical world and the nervous system for repairing, restoring and even augmenting body functions. The authors discuss the classic approaches for neural interfacing, the major challenges encountered, and recent, emerging techniques to mitigate these challenges for better chronic performances. Readers will benefit from this book’s unprecedented scope and depth of coverage on the technology of neural interfaces, the most critical component in any type of neural prostheses. Provides comprehensive coverage of major neural interfacing technologies; Reviews and discusses both classic and latest, emerging topics; Includes classification of technologies to provide an easy grasp of research and trends in the field.


Energy-Efficient Integrated Biomedical Circuits and Systems for Unobtrusive Neural Recording and Wireless Body-Area Networks

Energy-Efficient Integrated Biomedical Circuits and Systems for Unobtrusive Neural Recording and Wireless Body-Area Networks
Author: Chul Kim
Publisher:
Total Pages: 164
Release: 2017
Genre:
ISBN:

Download Energy-Efficient Integrated Biomedical Circuits and Systems for Unobtrusive Neural Recording and Wireless Body-Area Networks Book in PDF, ePub and Kindle

Despite tremendous progress over the years, current brain-machine interface (BMI) systems are relatively bulky, highly invasive, and limited in their effectiveness except for highly constrained tasks such as moving a cursor on a computer screen. To improve performance of current BMI systems, it is necessary to dramatically increase spatial resolution and coverage across the brain without constraining the mobility of the subject. This calls for innovative approaches to high-density integrated neural recording and stimulation using non-invasive or minimally invasive microelectrode and custom silicon integrated circuits at extreme energy and area efficiency. In this thesis, I present energy-efficient fully integrated miniaturized implants for electrocortical recording and stimulation, and unobtrusive body-area networks systems for subcutaneous power delivery and data communication, as fundamental building blocks to next generation BMI. First I describe a fully wireless, encapsulated neural interface and acquisition chip (ENIAC) in 180nm silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) technology for 16-channel neural recording and stimulation including integrated 4x4 electrode array, coil antenna, and wireless power transfer and data telemetry without any external components, completely contained in less than 3mm3 volume suitable for minimally invasive surgical insertion on the cortical surface. A novel fully integrated wireless power receiver design with an RF-decoupled H-tree signal distribution network delivers 1mW power over 1 cm distance while mitigating RF interference in the sensitive analog front-end and acquisition circuits for recording of electrocorticography (ECoG) signals transmitted through the skull. Second I highlight a 1mm2 16-channel neural recording and acquisition system-on-chip in 65nm CMOS offering 92 dB input dynamic range and


Modeling, Design and Test of an Integrated Optical Neural Recording Device

Modeling, Design and Test of an Integrated Optical Neural Recording Device
Author: Brendan Michael Crowley
Publisher:
Total Pages:
Release: 2014
Genre:
ISBN:

Download Modeling, Design and Test of an Integrated Optical Neural Recording Device Book in PDF, ePub and Kindle

It has long been a goal of neuroscientists to understand how electrophysiological activity in the nervous system corresponds to, and causes, specific physiological actions. Such knowledge could be used to develop cures for disabilities related to nervous system dysfunction, and to control artificial limbs or restore motion to a paralyzed patient. This has motivated research into technologies, broadly termed brain-machine interfaces, for interfacing with the nervous system. One category of such neural interfaces is implantable neural recording devices, which monitor and record neural signals through a microelectronic device implanted in the body. Typical implantable neural recording devices use a micro-electrode array to record electrical signals simultaneously from a multitude of neurons. Unfortunately, devices employing micro-electrode arrays have several issues from both the biological and circuit design points of view. These issues include tissue damage due to implantation of a micro-electrode array, degradation of recording fidelity over time, limited spatial resolution, the requirement to maintain charge balance in tissue, and the difficulty in implementing low-frequency (large time constant) filter cutoffs with limited chip area. These issues provided the motivation to investigate alternative methods for neural recording - namely optical methods based on fluorescence detection with voltage-sensitive fluorescent proteins. Optical recording methods can alleviate many of the issues with electrical recording, as well as provide other advantages, such as recording targeted to specific neurons/neuron types and higher spatial resolution due to reduced recording site pitch. The major limitations of fully implantable optical recording devices stem from size constraints, the attenuation of light in tissue, which limits imaging depth, and the need for genetically programmed voltage-sensitive fluorescent proteins, which must be introduced to the tissue in the case of chronic recording. This research began with investigating the feasibility of replacing an electrical neural record- ing front end with an optical front end - the conclusion being that producing an initial design was worthwhile. Thus, this thesis presents a prototype optical neural recording device for detecting individual spikes in Layer I of the brain. The device is designed for the fully implantable scenario, where space for typical fluorescence imaging optical components is limited, and a high level of integration is required. The thesis describes: 1) Modeling: a general framework for modeling near-field fluorescence detection systems is presented; the model is then extended and applied to the design of the optical neural recording device for detecting individual spikes in Layer I of the brain, taking into account light attenuation in tissue; 2) Design: the design of a high-sensitivity CMOS imaging chip used in the device; 3) Packaging: the packaging of the CMOS imager with LED dies and an excitation filter; and 4) Testing: the experimental results from testing the packaged device with a fluorescent tissue phantom designed to emulate layer I of the brain. Ideas for future work on such devices are discussed.


Neurotherapy

Neurotherapy
Author: Joost Verhaagen
Publisher: Elsevier
Total Pages: 546
Release: 2009-09-14
Genre: Medical
ISBN: 0080922961

Download Neurotherapy Book in PDF, ePub and Kindle

This book focuses on the exciting recent progress in restorative neurology and neuroscience. The book includes chapters on major neurodegenerative disorders of the brain and the visual system, including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, macular degeneration, retinitis pigmentosa, glaucoma, spinal cord trauma, and multiple sclerosis. The primary goal of the book is to give an overview of new developments in translational research and in potential therapeutic strategies, including stem cell therapy, immunotherapy, gene therapy, pharmacotherapy, neuroprostheses and deep brain stimulation. Provides the reader with a unique overview over all aspects of new advances in the therapy of neurological and psychiatric disorders Covers all levels of biological organization including novel molecular and cellular targets, electrophysiological, anatomical and behavioural substrates of neurodegeneration and the application of whole brain in vivo imaging Broad focus with contributions by the top scientists worldwide in the respective disciplines


Neural Engineering

Neural Engineering
Author: Bin He
Publisher: Springer Nature
Total Pages: 707
Release: 2020-09-21
Genre: Medical
ISBN: 3030433951

Download Neural Engineering Book in PDF, ePub and Kindle

This third edition overviews the essential contemporary topics of neuroengineering, from basic principles to the state-of-the-art, and is written by leading scholars in the field. The book covers neural bioelectrical measurements and sensors, EEG signal processing, brain-computer interfaces, implantable and transcranial neuromodulation, peripheral neural interfacing, neuroimaging, neural modelling, neural circuits and system identification, retinal bioengineering and prosthetics, and neural tissue engineering. Each chapter is followed by homework questions intended for classroom use. This is an ideal textbook for students at the graduate and advanced undergraduate level as well as academics, biomedical engineers, neuroscientists, neurophysiologists, and industry professionals seeking to learn the latest developments in this emerging field. Advance Praise for Neural Engineering, 3rd Edition: “A comprehensive and timely contribution to the ever growing field of neural engineering. Bin He’s edited volume provides chapters that cover both the fundamentals and state-of-the-art developments by the world’s leading neural engineers." Dr. Paul Sajda, Department of Biomedical Engineering, Electrical Engineering and Radiology, Columbia University “Neural Engineering, edited by Prof. He, is an outstanding book for students entering into this fast evolving field as well as experienced researchers. Its didactic and comprehensive style, with each chapter authored by leading scientific authorities, provides the ultimate reference for the field.” Dr. Dario Farina, Department of Bioengineering, Imperial College London, London, UK "Neural Engineering has come of age. Major advances have made possible prosthesis for the blind, mind control for quadraplegics and direct intervention to control seizures in epilepsy patients. Neural Engineering brings together reviews by leading researchers in this flourishing field. Dr. Terrence Sejnowski, Salk Institute for Biolgical Studies and UC San Diego


Niedermeyer's Electroencephalography

Niedermeyer's Electroencephalography
Author: Donald L. Schomer
Publisher: Lippincott Williams & Wilkins
Total Pages: 1308
Release: 2012-10-18
Genre: Medical
ISBN: 1451153155

Download Niedermeyer's Electroencephalography Book in PDF, ePub and Kindle

The leading reference on electroencephalography since 1982, Niedermeyer's Electroencephalography is now in its thoroughly updated Sixth Edition. An international group of experts provides comprehensive coverage of the neurophysiologic and technical aspects of EEG, evoked potentials, and magnetoencephalography, as well as the clinical applications of these studies in neonates, infants, children, adults, and older adults. This edition's new lead editor, Donald Schomer, MD, has updated the technical information and added a major new chapter on artifacts. Other highlights include complete coverage of EEG in the intensive care unit and new chapters on integrating other recording devices with EEG; transcranial electrical and magnetic stimulation; EEG/TMS in evaluation of cognitive and mood disorders; and sleep in premature infants, children and adolescents, and the elderly. A companion website includes fully searchable text and image bank.