High Energy Magnetic Excitations In Overdoped La2 Xsrxcuo4 Studied By Neutron And Resonant Inelastic X Ray Scattering PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download High Energy Magnetic Excitations In Overdoped La2 Xsrxcuo4 Studied By Neutron And Resonant Inelastic X Ray Scattering PDF full book. Access full book title High Energy Magnetic Excitations In Overdoped La2 Xsrxcuo4 Studied By Neutron And Resonant Inelastic X Ray Scattering.

High-energy Magnetic Excitations in Overdoped La2 XSrxCuO4 Studied by Neutron and Resonant Inelastic X-ray Scattering

High-energy Magnetic Excitations in Overdoped La2 XSrxCuO4 Studied by Neutron and Resonant Inelastic X-ray Scattering
Author:
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN:

Download High-energy Magnetic Excitations in Overdoped La2 XSrxCuO4 Studied by Neutron and Resonant Inelastic X-ray Scattering Book in PDF, ePub and Kindle

We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L3 edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2xSrxCuO4 with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the ([pi], [pi]) direction agree with the dispersion relation of the spin wave in the nondoped La2CuO4 (LCO), which is consistent with the previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L3 edge, we have measured the dispersion relations of the so-called paramagnon mode along both ([pi], [pi]) and ([pi],0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along ([pi],0) agrees well with the LCO spin-wave dispersion, the paramagnon in the ([pi], [pi]) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near ([pi]/2, [pi]/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the ([pi], [pi]) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. Lastly, we find a possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the ([pi], [pi]) direction as detected by the x-ray scattering.


Neutron Scattering - Magnetic and Quantum Phenomena

Neutron Scattering - Magnetic and Quantum Phenomena
Author:
Publisher: Elsevier
Total Pages: 534
Release: 2015-11-29
Genre: Science
ISBN: 0128020938

Download Neutron Scattering - Magnetic and Quantum Phenomena Book in PDF, ePub and Kindle

Neutron Scattering - Magnetic and Quantum Phenomena provides detailed coverage of the application of neutron scattering in condensed matter research. The book's primary aim is to enable researchers in a particular area to identify the aspects of their work where neutron scattering techniques might contribute, conceive the important experiments to be done, assess what is required to carry them out, write a successful proposal for one of the major user facilities, and perform the experiments under the guidance of the appropriate instrument scientist. An earlier series edited by Kurt Sköld and David L. Price, and published in the 1980s by Academic Press as three volumes in the series Methods of Experimental Physics, was very successful and remained the standard reference in the field for several years. This present work has similar goals, taking into account the advances in experimental techniques over the past quarter-century, for example, neutron reflectivity and spin-echo spectroscopy, and techniques for probing the dynamics of complex materials of technological relevance. This volume complements Price and Fernandez-Alonso (Eds.), Neutron Scattering - Fundamentals published in November 2013. Covers the application of neutron scattering techniques in the study of quantum and magnetic phenomena, including superconductivity, multiferroics, and nanomagnetism Presents up-to-date reviews of recent results, aimed at enabling the reader to identify new opportunities and plan neutron scattering experiments in their own field Provides a good balance between theory and experimental techniques Provides a complement to Price and Fernandez-Alonso (Eds.), Neutron Scattering - Fundamentals published in November 2013


Electronic Excitations in Lanthanum Cuprates Measured by Resonant Inelastic X-ray Scattering

Electronic Excitations in Lanthanum Cuprates Measured by Resonant Inelastic X-ray Scattering
Author: David Shai Ellis
Publisher:
Total Pages: 354
Release: 2010
Genre:
ISBN: 9780494677124

Download Electronic Excitations in Lanthanum Cuprates Measured by Resonant Inelastic X-ray Scattering Book in PDF, ePub and Kindle

Excitations of the valence electrons in the high-temperature superconducting cuprate La2--xSr xCuO4 were measured by Resonant Inelastic X-ray Scattering (RIXS). Several types of electronic excitations resonant at the Cu 1s→4p transition were studied over a wide range of dopings 0 ≤ x ≤ 0.35.A 500 meV excitation was observed at a reduced momentum transfer q=(pi 0) corresponding to the zone boundary, whose temperature and doping dependence was the same as the two-magnon Raman scattering mode. The momentum dependence of this 2-magnon excitation agrees with recent theoretical calculations.Momentum resolved measurements of the x=0 sample revealed a broad range of excitations above and below the main charge transfer peak, and their dispersions were measured across the Brillouin zone. These include a dispersionless ∼1.8 eV peak, which is either a local crystal field ( d-d excitation) or dipole-forbidden charge transfer excitation, and a dispersive 2.2 eV peak identified as a Zhang-Ng type charge-transfer exciton. The 2.2 eV peak was less dispersive than predicted from the theoretical models, due to electron-phonon coupling, as illustrated by the temperature dependent shift in the peak position.With increased hole doping, the RIXS spectral weight transfers from higher to lower energies, analogous to earlier optical conductivity studies. At the finite momentum of q=(pi 0), however, the changes are most systematic: an isosbestic point was observed at 2.2 eV where the spectra of all dopings cross, and spectral weight is transferred from high to low energies, with near-linear dependence on x, in a manner suggesting that the integrated RIXS intensity is preserved. The intensity and energy variations of the spectral peaks, as well as the isosbestic point and possible sum rule, could be explained qualitatively by a rigid three-band model which includes the non-bonding oxygen, upper Hubbard, and Zhang-Rice singlet bands. The estimated properties of the bands, such as width and energy separation, are in reasonably quantitative agreement with current theoretical models and angle-resolved photoemission measurements. Moreover, anomalies in the doping dependence are similar to those observed in other types of spectroscopies. These results underscore the relevance of the RIXS method in understanding the electronic behavior of the Lanthanum cuprates.


Electronic Excitations in Lanthanum Cuprates Measured by Resonant Inelastic X-ray Scattering

Electronic Excitations in Lanthanum Cuprates Measured by Resonant Inelastic X-ray Scattering
Author: David Shai Ellis
Publisher:
Total Pages: 0
Release: 2010
Genre:
ISBN: 9780494677124

Download Electronic Excitations in Lanthanum Cuprates Measured by Resonant Inelastic X-ray Scattering Book in PDF, ePub and Kindle

Excitations of the valence electrons in the high-temperature superconducting cuprate La2--xSr xCuO4 were measured by Resonant Inelastic X-ray Scattering (RIXS). Several types of electronic excitations resonant at the Cu 1s & rarr;4p transition were studied over a wide range of dopings 0 & le; x & le; 0.35.A 500 meV excitation was observed at a reduced momentum transfer q=(pi 0) corresponding to the zone boundary, whose temperature and doping dependence was the same as the two-magnon Raman scattering mode. The momentum dependence of this 2-magnon excitation agrees with recent theoretical calculations. Momentum resolved measurements of the x=0 sample revealed a broad range of excitations above and below the main charge transfer peak, and their dispersions were measured across the Brillouin zone. These include a dispersionless & sim;1.8 eV peak, which is either a local crystal field (d-d excitation) or dipole-forbidden charge transfer excitation, and a dispersive 2.2 eV peak identified as a Zhang-Ng type charge-transfer exciton. The 2.2 eV peak was less dispersive than predicted from the theoretical models, due to electron-phonon coupling, as illustrated by the temperature dependent shift in the peak position. With increased hole doping, the RIXS spectral weight transfers from higher to lower energies, analogous to earlier optical conductivity studies. At the finite momentum of q=(pi 0), however, the changes are most systematic: an isosbestic point was observed at 2.2 eV where the spectra of all dopings cross, and spectral weight is transferred from high to low energies, with near-linear dependence on x, in a manner suggesting that the integrated RIXS intensity is preserved. The intensity and energy variations of the spectral peaks, as well as the isosbestic point and possible sum rule, could be explained qualitatively by a rigid three-band model which includes the non-bonding oxygen, upper Hubbard, and Zhang-Rice singlet bands. The estimated properties of the bands, such as width and energy separation, are in reasonably quantitative agreement with current theoretical models and angle-resolved photoemission measurements. Moreover, anomalies in the doping dependence are similar to those observed in other types of spectroscopies. These results underscore the relevance of the RIXS method in understanding the electronic behavior of the Lanthanum cuprates.


Synchrotron Light Sources and Free-Electron Lasers

Synchrotron Light Sources and Free-Electron Lasers
Author: Eberhard J. Jaeschke
Publisher: Springer
Total Pages: 0
Release: 2016-05-27
Genre: Science
ISBN: 9783319143934

Download Synchrotron Light Sources and Free-Electron Lasers Book in PDF, ePub and Kindle

Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources driven by laser-plasma accelerators. The applications of the most advanced light sources and the advent of nanobeams and fully coherent x-rays allow experiments from which scientists in the past could not even dream. Examples are the diffraction with nanometer resolution, imaging with a full 3D reconstruction of the object from a diffraction pattern, measuring the disorder in liquids with high spatial and temporal resolution. The 20th century was dedicated to the development and improvement of synchrotron light sources with an ever ongoing increase of brilliance. With ultrahigh brilliance sources, the 21st century will be the century of x-ray lasers and their applications. Thus, we are already close to the dream of condensed matter and biophysics: imaging single (macro)molecules and measuring their dynamics on the femtosecond timescale to produce movies with atomic resolution.