High Density Integrated Optical Switch Arrays Based On Dynamic Waveguide Gratings PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download High Density Integrated Optical Switch Arrays Based On Dynamic Waveguide Gratings PDF full book. Access full book title High Density Integrated Optical Switch Arrays Based On Dynamic Waveguide Gratings.

Highly Scalable Silicon Photonic Switches Based on Waveguide Crossbar with Movable Waveguide Couplers

Highly Scalable Silicon Photonic Switches Based on Waveguide Crossbar with Movable Waveguide Couplers
Author: Sangyoon Han
Publisher:
Total Pages: 88
Release: 2016
Genre:
ISBN:

Download Highly Scalable Silicon Photonic Switches Based on Waveguide Crossbar with Movable Waveguide Couplers Book in PDF, ePub and Kindle

Fast optical-circuit-switches (OCS) having a large number of ports can significantly enhance the performance and the efficiency of modern data centers by actively rearranging network patterns. Commercially available optical switches typically operate with the use of moving mirror arrays. These switches can have port counts exceeding 100x100 and insertion losses lower than a few dBs. However, their switching speeds are typically tens-of-milliseconds which limits their applications in highly dynamic traffic patterns. Moreover, the moving-mirror-based optical switches make use of free-space optics that requires manual assembly and, as a result, the costs are high. Recently, optical switches based on silicon photonics technology have been designed and built. Silicon photonics technology provides an attractive platform for optical switches. In them, light is tightly confined in silicon waveguides due to its high refractive index. The tight confinement allows dense integrations of switch components. By leveraging complementary-metal-oxide-semiconductor (CMOS) fabrication processes, large scale integrated optical circuits can be made at relatively low cost in high volume. Silicon photonic switches with microsecond or nanosecond response times have been demonstrated using thermo-optic effects or electro-optic effects, and silicon photonic switches with integrated CMOS driving circuits have been demonstrated. However, the demonstrations were mostly limited to a small number of ports. This limitation is mainly due to the switch architecture used, which scales port counts by connecting 2x2 switching units serially. In this architecture, switching loss increases rapidly as the number of connected units increases. In this dissertation, I investigate a new architecture for silicon photonic switches that is highly scalable. The architecture is based on a waveguide crossbar having moving waveguide couplers that configure light paths, so that there is only one switching stage for any given light path regardless of port count. As a result, switching loss does not accumulate as port count increases. I compare scaling prospects for this architecture with those of previously designed silicon-photonic-switch architectures. I then investigate three implementations of silicon-photonic-switches that use the proposed architecture. First, the experimental demonstration of a 50x50 silicon photonic switch which I identify as Generation-A (Gen-A) is shown. In Gen-A a vertically moving directional coupler is designed for switching operations, and an electrostatic-cantilever-actuator is designed to move the directional coupler. A waveguide-crossing with ultra-low-optical-loss is designed to minimize crossbar losses. The 50x50 Gen-A switch is monolithically integrated in a chip with less than 9 x 9 mm2 of area. The response time of the Gen-A switch is 2.5 μs, and its actuation voltage is 14 V. Second, a silicon-photonic-switch identified as Gen-B that provides point-to-multipoint connections is researched. Laterally moving directional couplers are designed for more precise switching operation than Gen-A. The laterally moving directional couplers in Gen-B direct optical power only to receivers that are meant to subscribe to the sender, unlike broadcast-and-select type switches which waste optical power by sending it to all receivers. The Gen-B switch is demonstrated in 1-to-2 and 1-to-4 switching operations. The response time of the Gen-B switch is 9.6 μs, and its actuation voltage is 10 V. Finally I present a third case (Gen-C), a design for a silicon-photonic-switch that can process signals having various incoming polarizations is shown. In Gen-C, waveguides are designed to support both TE- and TM-modes, and the two-layer waveguide crossbar is used to eliminate completely any waveguide-crossing losses. The adiabatically tapered waveguide couplers in Gen-C are designed to switch both TE- and TM-modes at the same time while Polarization-Dependent-Loss (PDL) is held to 0.5 dB. The single-stage and two-stage parallel-plate-type electrostatic actuators in Gen-C are specifically designed for digital switching operation.


Non-reciprocal Wave Transmission in Integrated Waveguide Array Isolators

Non-reciprocal Wave Transmission in Integrated Waveguide Array Isolators
Author: Tony Yatming Ho
Publisher:
Total Pages: 110
Release: 2012
Genre: Integrated circuits
ISBN:

Download Non-reciprocal Wave Transmission in Integrated Waveguide Array Isolators Book in PDF, ePub and Kindle

Non-reciprocal wave transmission is a phenomenon witnessed in certain photonic devices when the wave propagation dynamics through the device along one direction differs greatly from the dynamics along the counter-propagating direction. Specifically, it refers to significant power transfer occurring in one direction, and greatly reduced power transfer in the opposite direction. The resulting effect is to isolate the directionality of wave propagation, allowing transmission to occur along one direction only. Given the popularity of photonic integrated circuits (PIC), in which all the optical components are fabricated on the same chip so that the entire optical system can be made more compact, it is desirable to have an easily integrated optical isolator. Common free-space optical isolator designs, which rely on the Faraday effect, are limited by the availability of suitable magnetic materials. This research proposes a novel integrated optical isolator based on an array of closely spaced, identical waveguides. Because of the nonlinear optical properties of the material, this device exploits the differing behaviors of such an array when illuminated with either a high power or a low power beam to achieve non-reciprocal wave transmission in the forwards and backwards directions, respectively. The switching can be controlled electro-optically via an integrated gain section which provides optical amplification before the input to the array. The design, fabrication, characterization and testing of this optical isolator are covered in this dissertation. We study the switching dynamics of this device and present its optimum operating conditions.


Encyclopedic Handbook of Integrated Optics

Encyclopedic Handbook of Integrated Optics
Author: Kenichi Iga
Publisher: CRC Press
Total Pages: 528
Release: 2018-10-03
Genre: Science
ISBN: 1420027816

Download Encyclopedic Handbook of Integrated Optics Book in PDF, ePub and Kindle

As optical technologies move closer to the core of modern computer architecture, there arise many challenges in building optical capabilities from the network to the motherboard. Rapid advances in integrated optics technologies are making this a reality. However, no comprehensive, up-to-date reference is available to the technologies and principles underlying the field. The Encyclopedic Handbook of Integrated Optics fills this void, collecting the work of 53 leading experts into a compilation of the most important concepts, phenomena, technologies, and terms covering all related fields. This unique book consists of two types of entries: the first is a detailed, full-length description; the other, a concise overview of the topic. Additionally, the coverage can be divided into four broad areas: A survey of the basics of integrated optics, exploring theory, practical concerns, and the fundamentals behind optical devices Focused discussion on devices and components such as arrayed waveguide grating, various types of lasers, optical amplifiers, and optoelectronic devices In-depth examination of subsystems including MEMS, optical pickup, and planar lightwave circuits Finally, systems considerations such as multiplexing, demultiplexing, 3R circuits, transmission, and reception Offering a broad and complete treatment of the field, the Encyclopedic Handbook of Integrated Optics is the complete guide to the fundamentals, principles, and applications of integrated optics technology.


Optics Letters

Optics Letters
Author:
Publisher:
Total Pages: 640
Release: 2007
Genre: Optics
ISBN:

Download Optics Letters Book in PDF, ePub and Kindle