High Accuracy Surface Modeling Method The Robustness PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download High Accuracy Surface Modeling Method The Robustness PDF full book. Access full book title High Accuracy Surface Modeling Method The Robustness.

High Accuracy Surface Modeling Method: The Robustness

High Accuracy Surface Modeling Method: The Robustness
Author: Na Zhao
Publisher: Springer Nature
Total Pages: 200
Release: 2021-08-11
Genre: Computers
ISBN: 9811640270

Download High Accuracy Surface Modeling Method: The Robustness Book in PDF, ePub and Kindle

This book focuses on the robustness analysis of high accuracy surface modeling method (HASM) to yield good performance of it. Understanding the sensitivity and uncertainty is important in model applications. The book aims to advance an integral framework for assessing model error that can demonstrate robustness across sets of possible controls, variable definitions, standard error, algorithm structure, and functional forms. It is an essential reference to the most promising numerical models. In areas where there is less certainty about models, but also high expectations of transparency, robustness analysis should aspire to be as broad as possible. This book also contains a chapter at the end featuring applications in climate simulation illustrating different implementations of HASM in surface modeling. The book is helpful for people involved in geographical information science, ecological informatics, geography, earth observation, and planetary surface modeling.


Hyper-Resolution Global Land Surface Model at Regional-to-Local Scales with Observed Groundwater Data Assimilation

Hyper-Resolution Global Land Surface Model at Regional-to-Local Scales with Observed Groundwater Data Assimilation
Author: Raj Shekhar Singh
Publisher:
Total Pages: 119
Release: 2014
Genre:
ISBN:

Download Hyper-Resolution Global Land Surface Model at Regional-to-Local Scales with Observed Groundwater Data Assimilation Book in PDF, ePub and Kindle

Modeling groundwater is challenging: it is not readily visible and is difficult to measure, with limited sets of observations available. Even though groundwater models can reproduce water table and head variations, considerable drift in modeled land surface states can nonetheless result from partially known geologic structure, errors in the input forcing fields, and imperfect Land Surface Model (LSM) parameterizations. These models frequently have biased results that are very different from observations. While many hydrologic groups are grappling with developing better models to resolve these issues, it is also possible to make models more robust through data assimilation of observation groundwater data. The goal of this project is to develop a methodology for high-resolution land surface model runs over large spatial region and improve hydrologic modeling through observation data assimilation, and then to apply this methodology to improve groundwater monitoring and banking. The high-resolution LSM modeling in this dissertation shows that model physics performs well at these resolutions and actually leads to better modeling of water/energy budget terms. The overarching goal of assimilation methodology is to resolve the critical issue of how to improve groundwater modeling in LSMs that lack sub-surface parameterizations and also run them on global scales. To achieve this, the research in this dissertation has been divided into three parts. The first goal was to run a commonly used land surface model at hyper resolution (1 km or finer) and show that this improves the modeling results without breaking the model. The second goal was to develop an observation data assimilation methodology to improve the high-resolution model. The third was to show real-world applications of this methodology. The need for improved accuracy is currently driving the development of hyper-resolution land surface models that can be implemented at a continental scale with resolutions of 1 km or finer. In Chapter 2, I describe our research incorporating fine-scale grid resolutions and surface data into the National Center for Atmospheric Research (NCAR) Community Land Model (CLM v4.0) for simulations at 1 km, 25 km, and 100 km resolution using 1 km soil and topographic information. Multi-year model runs were performed over the southwestern United States, including the entire state of California and the Colorado River basin. Results show changes in the total amount of CLM-modeled water storage and in the spatial and temporal distributions of water in snow and soil reservoirs, as well as in surface fluxes and energy balance. We also demonstrate the critical scales at which important hydrological processes--such as snow water equivalent, soil moisture content, and runoff--begin to more accurately capture the magnitude of the land water balance for the entire domain. This proves that grid resolution itself is also a critical component of accurate model simulations, and of hydrologic budget closure. To inform future model progress, we compare simulation outputs to station and gridded observations of model fields. Although the higher grid resolution model is not driven by high-resolution forcing, grid resolution changes alone yield significant reductions in the Root Mean Square Error (RMSE) between model outputs and actual observations: the RMSE decreases by more than 35% for soil moisture, 36% for terrestrial water storage anomaly, 34% for sensible heat, and 12% for snow water equivalent. The results of a 100 m resolution simulation over a spatial sub-domain indicate that parameters such as drainage, runoff, and infiltration are significantly impacted when hillslope scales of ~100 meters or finer are considered. We further show how limitations in the current model physics, including no lateral flow between grid cells, can affect model simulation accuracy. The results presented in Chapter 2 are encouraging, but also highlight the limitations in improving an LSM by only increasing spatial resolution of the model and the surface datasets. As was shown with the water table depth analysis, increasing model resolution cannot compensate for parameterization errors and lack of sub-surface information in CLM. However, this problem can be solved by providing additional information to the model in the form of water table depth via data assimilation. In Chapter 3, I discuss the development and verification of a methodology for assimilating observed groundwater depth measurements from multiple wells into the high spatial resolution LSM. A kriging-based interpolation technique is employed to overcome the problem of spatially and temporally sparse observations, and the interpolated data is assimilated into the CLM4.0 at 1 km resolution in a test region in northern California. Direct insertion and Ensemble Adjusted Kalman Filter (EAKF) based techniques are used for assimilation with direct insertion, producing better results and demonstrating major improvement in the simulation of water table depth. The Linear Pearson correlation coefficient between the observed well data and the assimilated model is 0.810, as opposed to only 0.107 for the non-assimilated model. This improvement is most significant where the water table depth is greater than 5 m. Assimilation also improves soil moisture content, especially in the dry season when the water table is at its lowest. Other variables, including sensible heat flux, ground evaporation, infiltration, and runoff are also analyzed in order to quantify the effect of this assimilation methodology. Though the changes in these variables seem small, they can be very important in coupled models, and the improved simulation of groundwater in the assimilated model can explain the changes in these results. This assimilation technique has been designed for use in regions with sparse and varied observation data, and it can be easily adapted to work in LSMs with a functional groundwater component. This gives us the capability to better model groundwater for the recent past and present, and also the potential to apply climate projections to probabilistically predict groundwater for future climate-change scenarios. We have collaborated with Wellintel Inc. to implement our methodology on the ground using their observation data. We are in the process of setting up our model over a large region along the central California coast, where for the past few months Wellintel has implemented a pilot with measurements based on its water table depth measuring devices. The aim of this collaboration is to provide users with actionable water table depth data in and around their properties for the past, present, and near future. We are combining this methodology with Wellintel data to create a groundwater-management and groundwater-banking monitoring tool. This is the first time that groundwater assimilation has been simulated in a high-resolution LSM, and as such this project provides proof-of-concept and application of a unique methodology that can be run at hyper resolution with data assimilation. The assimilation method is a very powerful tool that researchers can now apply to model land surface parameters much better than previously.


Image Understanding

Image Understanding
Author:
Publisher:
Total Pages: 164
Release:
Genre: Image processing
ISBN:

Download Image Understanding Book in PDF, ePub and Kindle


Uncertainty Management for Robust Industrial Design in Aeronautics

Uncertainty Management for Robust Industrial Design in Aeronautics
Author: Charles Hirsch
Publisher: Springer
Total Pages: 819
Release: 2018-07-21
Genre: Technology & Engineering
ISBN: 331977767X

Download Uncertainty Management for Robust Industrial Design in Aeronautics Book in PDF, ePub and Kindle

This book covers cutting-edge findings related to uncertainty quantification and optimization under uncertainties (i.e. robust and reliable optimization), with a special emphasis on aeronautics and turbomachinery, although not limited to these fields. It describes new methods for uncertainty quantification, such as non-intrusive polynomial chaos, collocation methods, perturbation methods, as well as adjoint based and multi-level Monte Carlo methods. It includes methods for characterization of most influential uncertainties, as well as formulations for robust and reliable design optimization. A distinctive element of the book is the unique collection of test cases with prescribed uncertainties, which are representative of the current engineering practice of the industrial consortium partners involved in UMRIDA, a level 1 collaborative project within the European Commission's Seventh Framework Programme (FP7). All developed methods are benchmarked against these industrial challenges. Moreover, the book includes a section dedicated to Best Practice Guidelines for uncertainty quantification and robust design optimization, summarizing the findings obtained by the consortium members within the UMRIDA project. All in all, the book offers a authoritative guide to cutting-edge methodologies for uncertainty management in engineering design, covers a wide range of applications and discusses new ideas for future research and interdisciplinary collaborations.


Three-Dimensional Model Analysis and Processing

Three-Dimensional Model Analysis and Processing
Author: Faxin Yu
Publisher: Springer Science & Business Media
Total Pages: 434
Release: 2011-02-03
Genre: Computers
ISBN: 3642126510

Download Three-Dimensional Model Analysis and Processing Book in PDF, ePub and Kindle

With the increasing popularization of the Internet, together with the rapid development of 3D scanning technologies and modeling tools, 3D model databases have become more and more common in fields such as biology, chemistry, archaeology and geography. People can distribute their own 3D works over the Internet, search and download 3D model data, and also carry out electronic trade over the Internet. However, some serious issues are related to this as follows: (1) How to efficiently transmit and store huge 3D model data with limited bandwidth and storage capacity; (2) How to prevent 3D works from being pirated and tampered with; (3) How to search for the desired 3D models in huge multimedia databases. This book is devoted to partially solving the above issues. Compression is useful because it helps reduce the consumption of expensive resources, such as hard disk space and transmission bandwidth. On the downside, compressed data must be decompressed to be used, and this extra processing may be detrimental to some applications. 3D polygonal mesh (with geometry, color, normal vector and texture coordinate information), as a common surface representation, is now heavily used in various multimedia applications such as computer games, animations and simulation applications. To maintain a convincing level of realism, many applications require highly detailed mesh models. However, such complex models demand broad network bandwidth and much storage capacity to transmit and store. To address these problems, 3D mesh compression is essential for reducing the size of 3D model representation.


Accurate, Efficient, and Robust 3D Reconstruction of Static and Dynamic Objects

Accurate, Efficient, and Robust 3D Reconstruction of Static and Dynamic Objects
Author: Kyoung-Rok Lee
Publisher:
Total Pages: 94
Release: 2014
Genre:
ISBN: 9781321361797

Download Accurate, Efficient, and Robust 3D Reconstruction of Static and Dynamic Objects Book in PDF, ePub and Kindle

3D reconstruction is the method of creating the shape and appearance of a real scene or objects, given a set of images on the scene. Realistic scene or object reconstruction is essential in many applications such as robotics, computer graphics, Tele- Immersion (TI), and Augmented Reality (AR). This thesis explores accurate, efficient, and robust methods for the 3D reconstruction of static and dynamic objects from RGB-D images. For accurate 3D reconstruction, the depth maps should have high geometric quality and resolution. However, depth maps are often captured at low-quality or low resolution, due to either sensor hardware limitations or errors in estimation. A new sampling-based robust multi-lateral filtering method is proposed herein to improve the resolution and quality of depth data. The enhancement is achieved by selecting reliable depth samples from a neighborhood of pixels and applying multi-lateral filtering using colored images that are both high-quality and high-resolution. Camera pose estimation is one of the most important operations in 3D reconstruction, since any minor error in this process may distort the resulting reconstruction. We present a robust method for camera tracking and surface mapping using a handheld RGB-D camera, which is effective for challenging situations such as during fast camera motion or in geometrically featureless scenes. This is based on the quaternion-based orientation estimation method for initial sparse estimation and a weighted Iterative Closest Point (ICP) method for dense estimation to achieve a better rate of convergence for both the optimization and accuracy of the resulting trajectory. We present a novel approach for the reconstruction of static object/scene with realistic surface geometry using a handheld RGB-D camera. To obtain high-resolution RGB images, an additional HD camera is attached to the top of a Kinect and is calibrated to reconstruct a 3D model with realistic surface geometry and high-quality color textures. We extend our depth map refinement method by utilizing high frequency information in color images to recover finer-scale surface geometry. In addition, we use our robust camera pose estimation to estimate the orientation of the camera in the global coordinate system accurately. For the reconstruction of moving objects, a novel dynamic scene reconstruction system using multiple commodity depth cameras is proposed. Instead of using expensive multi-view scene capturing setups, our system only requires four Kinects, which are carefully located to generate full 3D surface models of objects. We introduce a novel depth synthesis method for point cloud densification and noise removal in the depth data. In addition, a new weighting function is presented to overcome the drawbacks of the existing volumetric representation method.


Robust Methods for Dense Monocular Non-Rigid 3D Reconstruction and Alignment of Point Clouds

Robust Methods for Dense Monocular Non-Rigid 3D Reconstruction and Alignment of Point Clouds
Author: Vladislav Golyanik
Publisher: Springer Nature
Total Pages: 352
Release: 2020-06-04
Genre: Computers
ISBN: 3658305673

Download Robust Methods for Dense Monocular Non-Rigid 3D Reconstruction and Alignment of Point Clouds Book in PDF, ePub and Kindle

Vladislav Golyanik proposes several new methods for dense non-rigid structure from motion (NRSfM) as well as alignment of point clouds. The introduced methods improve the state of the art in various aspects, i.e. in the ability to handle inaccurate point tracks and 3D data with contaminations. NRSfM with shape priors obtained on-the-fly from several unoccluded frames of the sequence and the new gravitational class of methods for point set alignment represent the primary contributions of this book. About the Author: Vladislav Golyanik is currently a postdoctoral researcher at the Max Planck Institute for Informatics in Saarbrücken, Germany. The current focus of his research lies on 3D reconstruction and analysis of general deformable scenes, 3D reconstruction of human body and matching problems on point sets and graphs. He is interested in machine learning (both supervised and unsupervised), physics-based methods as well as new hardware and sensors for computer vision and graphics (e.g., quantum computers and event cameras).


Computer Vision: Concepts, Methodologies, Tools, and Applications

Computer Vision: Concepts, Methodologies, Tools, and Applications
Author: Management Association, Information Resources
Publisher: IGI Global
Total Pages: 2494
Release: 2018-02-02
Genre: Computers
ISBN: 1522552057

Download Computer Vision: Concepts, Methodologies, Tools, and Applications Book in PDF, ePub and Kindle

The fields of computer vision and image processing are constantly evolving as new research and applications in these areas emerge. Staying abreast of the most up-to-date developments in this field is necessary in order to promote further research and apply these developments in real-world settings. Computer Vision: Concepts, Methodologies, Tools, and Applications is an innovative reference source for the latest academic material on development of computers for gaining understanding about videos and digital images. Highlighting a range of topics, such as computational models, machine learning, and image processing, this multi-volume book is ideally designed for academicians, technology professionals, students, and researchers interested in uncovering the latest innovations in the field.