Handbook Of Theoretical And Computational Nanotechnology Nanomechanics And Multiscale Modeling PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Handbook Of Theoretical And Computational Nanotechnology Nanomechanics And Multiscale Modeling PDF full book. Access full book title Handbook Of Theoretical And Computational Nanotechnology Nanomechanics And Multiscale Modeling.

Multiscale Materials Modeling for Nanomechanics

Multiscale Materials Modeling for Nanomechanics
Author: Christopher R. Weinberger
Publisher: Springer
Total Pages: 554
Release: 2016-08-30
Genre: Technology & Engineering
ISBN: 3319334808

Download Multiscale Materials Modeling for Nanomechanics Book in PDF, ePub and Kindle

This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.


Computational Multiscale Modeling of Multiphase Nanosystems

Computational Multiscale Modeling of Multiphase Nanosystems
Author: Alexander V. Vakhrushev
Publisher: CRC Press
Total Pages: 403
Release: 2017-10-10
Genre: Science
ISBN: 1771885297

Download Computational Multiscale Modeling of Multiphase Nanosystems Book in PDF, ePub and Kindle

Computational Multiscale Modeling of Multiphase Nanosystems: Theory and Applications presents a systematic description of the theory of multiscale modeling of nanotechnology applications in various fields of science and technology. The problems of computing nanoscale systems at different structural scales are defined, and algorithms are given for their numerical solutions by the quantum/continuum mechanics, molecular dynamics, and mesodynamics methods. Emphasis is given to the processes of the formation, movement, and interaction of nanoparticles; the formation of nanocomposites; and the processes accompanying the application of nanocomposites. The book concentrates on different types of nanosystems: solid, liquid, gaseous, and multi-phase, consisting of various elements interacting with each other, and with other elements of the nanosystem and with the environment. The book includes a large number of examples of numerical modeling of nanosystems. The valuable information presented here will be useful to engineers, researchers, and postgraduate students engaged in the design and research in the field of nanotechnology.


Handbook of Theoretical and Computational Nanotechnology: Nanodevice modeling and nanoelectronics

Handbook of Theoretical and Computational Nanotechnology: Nanodevice modeling and nanoelectronics
Author: Michael Rieth
Publisher:
Total Pages: 884
Release: 2006
Genre: Nanoscience
ISBN: 9781588830524

Download Handbook of Theoretical and Computational Nanotechnology: Nanodevice modeling and nanoelectronics Book in PDF, ePub and Kindle

Volume 1: Basic Concepts, Nanomachines and Bionanodevices; Volume 2: Atomistic Simulations - Algorithms and Methods; Volume 3: Quantum and Molecular Computing, and Quantum Simulations; Volume 4: Nanomechanics and Multiscale Modeling; Volume 5: Transport Phenomena and Nanoscale Processes; Volume 6: Bioinformatics, Nanomedicine and Drug Delivery; Volume 7: Magnetic Nanostructures and Nano-optics; Volume 8: Functional Nanomaterials, Nanoparticles and Polymer Nanostructures; Volume 9: Nanocomposites, Nano-Assemblies, and Nanosurfaces; Volume 10: Nanodevice Modeling and Nanoelectronics.


Trends in Computational Nanomechanics

Trends in Computational Nanomechanics
Author: Traian Dumitrica
Publisher: Springer Science & Business Media
Total Pages: 628
Release: 2010-03-14
Genre: Technology & Engineering
ISBN: 1402097859

Download Trends in Computational Nanomechanics Book in PDF, ePub and Kindle

Trends in Computational Nanomechanics reviews recent advances in analytical and computational modeling frameworks to describe the mechanics of materials on scales ranging from the atomistic, through the microstructure or transitional, and up to the continuum. The book presents new approaches in the theory of nanosystems, recent developments in theoretical and computational methods for studying problems in which multiple length and/or time scales must be simultaneously resolved, as well as example applications in nanomechanics. This title will be a useful tool of reference for professionals, graduates and undergraduates interested in Computational Chemistry and Physics, Materials Science, Nanotechnology.


Handbook of Micromechanics and Nanomechanics

Handbook of Micromechanics and Nanomechanics
Author: Shaofan Li
Publisher: CRC Press
Total Pages: 1256
Release: 2016-04-19
Genre: Science
ISBN: 9814411248

Download Handbook of Micromechanics and Nanomechanics Book in PDF, ePub and Kindle

This book presents the latest developments and applications of micromechanics and nanomechanics. It particularly focuses on some recent applications and impact areas of micromechanics and nanomechanics that have not been discussed in traditional micromechanics and nanomechanics books on metamaterials, micromechanics of ferroelectric/piezoelectric,


Introduction to Computational Nanomechanics

Introduction to Computational Nanomechanics
Author: Shaofan Li
Publisher: Cambridge University Press
Total Pages: 586
Release: 2022-12-08
Genre: Technology & Engineering
ISBN: 1009301780

Download Introduction to Computational Nanomechanics Book in PDF, ePub and Kindle

An original comprehensive guide on computational nanomechanics discussing basic concepts and implications in areas such as computational physics, materials, mechanics and engineering as well as several other interdisciplinary avenues. This book makes the underlying theory accessible to readers without specialised training or extensive background in quantum physics, statistical mechanics, or theoretical chemistry. It combines a careful treatment of theoretical concepts with a detailed tutorial on computer software and computing implementation, including multiscale simulation and computational statistical theory. Multidisciplinary perspectives are provided, yielding a true insight on the applications of computational nanomechanics across diverse engineering fields. The book can serve as a practical guide with step-by-step discussion of coding, example problems and case studies. This book will be essential reading for students new to the subject, as well as an excellent reference for graduates and researchers.


Micromechanics and Nanoscale Effects

Micromechanics and Nanoscale Effects
Author: Vasyl Michael Harik
Publisher: Springer Science & Business Media
Total Pages: 251
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 9400710135

Download Micromechanics and Nanoscale Effects Book in PDF, ePub and Kindle

This volume consists of the state-of-the-art reports on new developments in micromechanics and the modeling of nanoscale effects, and is a companion book to the recent Kluwer volume on nanomechanics and mul- scale modeling (it is entitled Trends in Nanoscale Mechanics). The two volumes grew out of a series of discussions held at NASA Langley Research Center (LaRC), lectures and other events shared by many researchers from the national research laboratories and academia. The key events include the 2001 Summer Series of Round-Table Discussions on Nanotechnology at ICASE Institute (NASA LaRC) organized by Drs. V. M. Harik and M. D. Salas and the 2002 NASA LaRC Workshop on Multi-scale Modeling. The goal of these interactions was to foster collaborations between academic researchers and the ICASE Institute (NASA LaRC), a universi- based institute, which has pioneered world-class computational, theoretical and experimental research in the disciplines that are important to NASA. Editors gratefully acknowledge help of Ms. E. Todd (ICASE, NASA LaRC), the ICASE Director M. D. Salas and all reviewers, in particular, Dr. B. Diskin (ICASE/NIA, NASA LaRC), Prof. R. Haftka (University of Florida), Dr. V. M. Harik (ICASE/Swales Aerospace, NASA LaRC), Prof.


Multiscale Modelling and Optimisation of Materials and Structures

Multiscale Modelling and Optimisation of Materials and Structures
Author: Tadeusz Burczynski
Publisher: John Wiley & Sons
Total Pages: 440
Release: 2022-05-19
Genre: Technology & Engineering
ISBN: 1118536452

Download Multiscale Modelling and Optimisation of Materials and Structures Book in PDF, ePub and Kindle

Addresses the very topical, crucial and original subject of parameter identification and optimization within multiscale modeling methods Multiscale Modelling and Optimization of Materials and Structures presents an important and challenging area of research that enables the design of new materials and structures with better quality, strength and performance parameters as well as the creation of reliable models that take into account structural, material and topological properties at different scales. The authors’ approach is four-fold; 1) the basic principles of micro and nano scale modeling techniques; 2) the connection of micro and/or nano scale models with macro simulation software; 3) optimization development in the framework of multiscale engineering and the solution of identification problems; 4) the computer science techniques used in this model and advice for scientists interested in developing their own models and software for multiscale analysis and optimization. The authors present several approaches such as the bridging and homogenization methods, as well as the general formulation of complex optimization and identification problems in multiscale modelling. They apply global optimization algorithms based on robust bioinspired algorithms, proposing parallel and multi-subpopulation approaches in order to speed-up computations, and discuss several numerical examples of multiscale modeling, optimization and identification of composite and functionally graded engineering materials and bone tissues. Multiscale Modelling and Optimization of Materials and Structures is thereby a valuable source of information for young scientists and students looking to develop their own models, write their own computer programs and implement them into simulation systems. Describes micro and nano scale models developed by the authors along with case studies of analysis and optimization Discusses the problems of computing costs, efficiency of information transfer, effective use of the computer memory and several other aspects of development of multiscale models Includes real physical, chemical and experimental studies with modern experimental techniques Provides a valuable source of information for young scientists and students looking to develop their own models, write their own computer programs, and implement them into simulation systems.