Growth Of Fullerene C70 Thin Films And Photovoltaic Characterization Of Fullerene Based Solar Cells PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Growth Of Fullerene C70 Thin Films And Photovoltaic Characterization Of Fullerene Based Solar Cells PDF full book. Access full book title Growth Of Fullerene C70 Thin Films And Photovoltaic Characterization Of Fullerene Based Solar Cells.

Fabrication and Characterization of Organic Solar Cells

Fabrication and Characterization of Organic Solar Cells
Author: Emre Yengel
Publisher:
Total Pages: 81
Release: 2010
Genre: Energy conversion
ISBN: 9781124400662

Download Fabrication and Characterization of Organic Solar Cells Book in PDF, ePub and Kindle

Bulk heterojunction organic solar cells have recently drawn tremendous attention because of their technological advantages for actualization of large-area and cost effective fabrication. Two important criteria of these cells are efficiency and cost. The research in this dissertation focuses on the enhancement of these criteria with two different approaches. In the first approach, power conversion efficiency of organic photovoltaic devices is enhanced by introducing Deoxyribonucleic acids DNA into the device structure. DNA provide exciting opportunities as templates in self assembled architectures and functionality in terms of optical and electronic properties. In the first method, we investigate the effects of DNA and metalized DNA sequences in polymer fullerene bulk-heterojunction (BHJ) solar cells. These effects are characterized via optical, quantum efficiency and current-voltage measurements. We demonstrate that by placing on the hole collection side of the active layer, DNA and Pt-DNA sequences lead to an increase in the power conversion efficiency (PCE) by %16 and %30, respectively. Furthermore, we studied the electrical charge characteristics of our DNA layer by using capacitance-voltage (C-V) measurements to explain the increase in hole collection which shows that spray coated DNA formed a negative layer which can increase the hole collection in the cathode side. In the second approach, device cost is tried to reduce by replacing the most expansive material, indium thin oxide (ITO) thin films, with graphene thin films. Large area graphene films were grown with chemical vapor deposition (CVD) method. It is observed that, its pristine form, the electrical and surface properties of these films are not sufficient enough for the organic photovoltaic applications. These properties are enhanced with a surface treatment of Argon (Ar) plasma and nitric acid bath. The results of these treatments show that the surface becomes hydrophilic and surface resistance can be decreased by %25. Then, it is demonstrated that the PCE of the graphene based solar cells can be reached up to one tenth of the ITO based devices. The research conducted in this dissertation offers promising potential of bulk heterojunction organic solar cells as a clean and affordable source of energy source in the near future.


Advanced Characterization Techniques for Thin Film Solar Cells

Advanced Characterization Techniques for Thin Film Solar Cells
Author: Daniel Abou-Ras
Publisher: John Wiley & Sons
Total Pages: 760
Release: 2016-07-13
Genre: Science
ISBN: 3527699015

Download Advanced Characterization Techniques for Thin Film Solar Cells Book in PDF, ePub and Kindle

The book focuses on advanced characterization methods for thin-film solar cells that have proven their relevance both for academic and corporate photovoltaic research and development. After an introduction to thin-film photovoltaics, highly experienced experts report on device and materials characterization methods such as electroluminescence analysis, capacitance spectroscopy, and various microscopy methods. In the final part of the book simulation techniques are presented which are used for ab-initio calculations of relevant semiconductors and for device simulations in 1D, 2D and 3D. Building on a proven concept, this new edition also covers thermography, transient optoelectronic methods, and absorption and photocurrent spectroscopy.


Process-structure-property relationship of polymer-fullerene bulk heterojunction films for organic solar cells

Process-structure-property relationship of polymer-fullerene bulk heterojunction films for organic solar cells
Author: Benjamin Schmidt-Hansberg
Publisher: Cuvillier Verlag
Total Pages: 226
Release: 2012-05-09
Genre: Science
ISBN: 3736940734

Download Process-structure-property relationship of polymer-fullerene bulk heterojunction films for organic solar cells Book in PDF, ePub and Kindle

Photovoltaic (PV) is attracting increasing interest as an important contribution to renewable energy supply. Organic photovoltaic (OPV) is a comparable young PV technology with a great potential towards low cost solar power. This is due to the intrinsic advantage of the incorporated organic semiconductors which are soluble. Solution processing allows high throughput coating and printing processes. Hence, energy intensive high temperature and vacuum steps can be avoided which reduces the fabrication costs and keeps energy payback times low. The performance of organic solar cells strongly depends on the structure of the solution cast photoactive layer which comprises a polymer-fullerene blend. The blend structure evolves during the film drying step which has been studied in this thesis. Starting point of this work was the hypothesis that drying process parameters are suitable for systematically tuning the structure formation during drying of solution cast polymer-fullerene films in order to generate optimized structures with improved photovoltaic performance. For the evaluation of this hypothesis the structure formation of the polymer-fullerene system Poly(3-hexylthiophene-2,5-diyl):[6,6]-Phenyl C61-butyric acid methyl ester (P3HT:PCBM) was investigated incorporating i) thin film drying kinetics, ii) phase behavior of polymer-fullerene solutions, iii) structure formation and iv) the drying process-structure-property relationship of solar cells. The generality of the obtained results has been studied in comparison with the behavior of Poly{[4,40-bis(2-ethylhexyl)dithieno(3,2-b;20,30-d)silole]-2,6-diyl-alt-(2,1,3-benzothidiazole)-4,7-diyl} (PSBTBT). i) Within this thesis a dedicated coating and drying setup was developed which afforded precisely defined coating and drying process conditions as prerequisite for all obtained results. For the first time, the drying behavior of finally a few hundred nanometer thin films could be investigated at five measurement positions with laser reflectometry simultaneously. This allowed the elaboration of a spatially resolved numerical thin film drying model. ii) In conjunction with the measurement and simulation of the evolution of film composition it was required to determine important instants of phase transitions such as solubility limits. Therefore the binodal region of P3HT solutions has been determined in the temperature range of 0°C-60°C. Within the unstable region P3HT solutions phase separate into a sol and a gel phase. The fullerene PCBM exhibits only a single solubility limit. iii) In order to correlate the expected phase transitions according to the phase diagrams with the real structure formation, the above mentioned coating and drying setup was combined with synchrotron based in situ grazing incidence X-ray diffraction (GIXD) measurements. This gave unique insights into the mechanisms and dynamics of polymer-fullerene blend crystallization. After reaching P3HT solubility the crystallization proceeded with well-oriented interface-induced P3HT nucleation followed by P3HT crystal growth with increasing orientation distribution of the crystallites and PCBM aggregation in the final drying period. Furthermore strong polymer-fullerene interaction forces could be derived. By increasing the PCBM fraction it could be shown for the 1:2 P3HT:PCBM ratio that PCBM molecules brake the (020) π-π-stacking of P3HT lamellae which signifies a dramatic loss of hole mobility and consequently reduced device performance. It is further notable that increasing drying temperatures reduce the amount of (020) π-π-stacked P3HT molecules but lead to an increased amount of P3HT (100) crystallinity. Hence, drying temperature determines the preferred direction of crystal growth. iv) Besides a finer degree of phase separation, reduced drying temperatures also cause a higher amount of π-π-stacked polymers, longer effective polymer conjugation length, increased amount of vertical charge transport pathways and an increasingly rough topography due to larger polymer aggregates. Jointly this leads to improved power conversion efficiency at lower drying temperatures. Based on the elaborated knowledge a strategy for a 40% reduction of drying time with only small drawbacks in solar cell performance could be developed. Finally it was important to investigate the transferability of the obtained knowledge to other material systems. PSBTBT:PC71BM blends show similarities to that of P3HT:PCBM with partly interface induced polymer nucleation and subsequent fullerene aggregation in the final drying stage. The kinetics of molecular ordering however proceed fast enough such that the drying process under the investigated conditions cannot limit the structure formation. Hence, P3HT:PCBM is a suitable model system due to its sensitivity to many process parameters. According to the process influence on novel materials the results of this thesis can serve as a source for appropriate process strategies.


Development of Deposition and Characterization Systems for Thin Film Solar Cells

Development of Deposition and Characterization Systems for Thin Film Solar Cells
Author: Alexander J. Cimaroli
Publisher:
Total Pages: 153
Release: 2016
Genre: Photovoltaic cells
ISBN:

Download Development of Deposition and Characterization Systems for Thin Film Solar Cells Book in PDF, ePub and Kindle

Photovoltaic (PV) devices are becoming more important due to a number of economic and environmental factors. PV research relies on the ability to quickly fabricate and characterize these devices. While there are a number of deposition methods that are available in a laboratory setting, they are not necessarily able to be scaled to provide high throughput in a commercial setting. A close-space sublimation (CSS) system was developed to provide a means of depositing thin films in a very controlled and scalable manner. Its viability was explored by using it to deposit the absorber layer in Zn3P2 and CdTe solar cell devices. Excellent control over morphology and growth conditions and a high level of repeatability was demonstrated in the study of textured Zn3P2 thin films. However, some limitations imposed by the structure of Zn3P2-based PV devices showed that CSS may not be the best approach for depositing Zn3P2 thin films. Despite the inability to make Zn3P2 solar cell devices, high efficiency CdTe solar cells were fabricated using CSS. With the introduction of Perovskite-based solar cell devices, the viability of data collected from conventional J-V measurements was questioned due to the J-V hysteresis that Perovskite devices exhibited. New methods of solar cell characterization were developed in order to accurately and quickly assess the performance of hysteretic PV devices. Both J-V measurements and steady-state efficiency measurements are prone to errors due to hysteresis and maximum power point drift. To resolve both of these issues, a maximum power point tracking (MPPT) system was developed with two algorithms: a simple algorithm and a predictive algorithm. The predictive algorithm showed increased resistance to the effects of hysteresis because of its ability to predict the steady-state current after a bias step with a double exponential decay model fit. Some publications have attempted to quantify the degree of J-V hysteresis present in fabricated Perovskite-based devices, but the analysis relied on J-V measurements. The sweep rate, starting bias, illumination time, etc. would affect the value of the calculated degree of hysteresis. A method of using transient photocurrent measurements is presented to accurately quantify the degree of hysteresis for all solar cells: not just Perovskite-based devices. According to this method, almost all solar cell devices exhibit several forms of J-V hysteresis. This method may open new ways of analyzing the defects in fabricated PV devices


Polymer/Fullerene Nanocomposites

Polymer/Fullerene Nanocomposites
Author: Ayesha Kausar
Publisher: Elsevier
Total Pages: 278
Release: 2023-01-10
Genre: Technology & Engineering
ISBN: 0323995160

Download Polymer/Fullerene Nanocomposites Book in PDF, ePub and Kindle

Polymer/Fullerene Nanocomposites: Design and Applications synopsizes state-of-the-art essentials and versatile inventions in polymers and fullerenes derived nanocomposites. As the design, fabrication and exploration of polymeric materials with fullerenes in advanced nanomaterials is progressing quickly because of their unique combination of properties, including optical, electronic, electrical, mechanical, thermal, photovoltaic, sensing, shape memory, capacitive, antimicrobial, and other applications, this book fills a void in literature compilation and assessment for a field still in its infancy. The introductory chapter of this manuscript provides a comprehensive update on the fundamentals and applications of fullerenes, with following chapters revealing the properties and essential aspects of polymeric nanocomposites. Reconnoiters state-of-the-art of fullerenes Focuses on fullerene nano-additives, developing covalent interactions, and physical dispersion with conjugated polymers and other polymeric matrices Emphasizes fullerene nanowhisker and nanoball nanofillers in nanocomposites Unfolds advanced applications of polymer/fullerene nanomaterials in stimuli-responsive systems, optoelectronic devices (photovoltaics, light emitting diodes and optical sensors), fuel cells, supercapacitors and biomedical fields


Miniaturized Electrochemical Devices

Miniaturized Electrochemical Devices
Author: Sanket Goel
Publisher: CRC Press
Total Pages: 311
Release: 2023-08-08
Genre: Technology & Engineering
ISBN: 1000917002

Download Miniaturized Electrochemical Devices Book in PDF, ePub and Kindle

Evidently, electrochemical sensing has revolutionized the electroanalytical detections in the world. Since the 19th century, a huge amount of growth has been visible on various fronts, such as biosensors, energy devices, semiconductor devices, communication, embedded systems, sensors etc. However, the major research gap lies in the fact that most of the reported literatures are bulk systems; hence there are limitations for practical applications. Research in these domains has been carried out by both academia and industry, whereby academics is the backbone whose intellectual outputs have been widely adopted by the industry and implemented for consumers at large. In order to impart portability to the electrochemical sensors for point-of-care application, the collaboration of electrochemistry, microfluidics, electronics and communication as an interdisciplinary forum is crucial. The miniaturization, automation, IoT enabling and integration are the requirements for building the mentioned research gap. The conversion of electrochemical sensing theoretical concepts to practical applications in real time via miniaturization and integration of microfluidics will enhance this domain. In this context, of lately, several research groups have developed miniaturized microdevices as electrochemical-sensing platforms. This has led to a demand of offering a reference book as a guideline for the PhD programs in electrochemistry, MEMS, electronics and communication. Undoubtedly, this will have a huge impact for R&D in industries, public-funded research institutes and academic institutions. The book will provide a single forum to understand the current research trends and future perspectives of various electrochemical sensors and their integration in microfluidic devices, automation and point-of-care testing. For students, the book will become a motivation for them to explore these areas for their career standpoints. For the professionals, the book will become a thought-provoking stage to manoeuvre the next-generation devices/processes for commercialization.