Granular Materials At Meso Scale PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Granular Materials At Meso Scale PDF full book. Access full book title Granular Materials At Meso Scale.

Granular Materials at Meso-scale

Granular Materials at Meso-scale
Author: Bernard Cambou
Publisher: Elsevier
Total Pages: 198
Release: 2016-08-19
Genre: Technology & Engineering
ISBN: 008101077X

Download Granular Materials at Meso-scale Book in PDF, ePub and Kindle

Granular Materials at Meso-scale: Towards a Change of Scale Approach proposes a new way for developing an efficient change of scale—considering a meso-scale defined at the level of local arrays of particles. The change of scale is known to be a very interesting way to improve the modelling of mechanical behavior granular materials. In the past, studies have been proposed using a micro-scale at the grain level to perform change of scale, but limitations have been proven for these approaches. Definition and analysis of the phases are detailed, constituted by sets of meso-domains sharing the same texture characteristics. The authors propose a local constitutive model for the phases, allowing the constitutive model of the representative elementary volume to be definied from a change-of-scale approach and, finally, presenting the validation of obtained modeling on cyclic loadings. Proposes a new way for developing an efficient change of scale—considering a meso-scale Explores local meso-domains and texture characteristics Defines meso-strain and stress Analyzes the evolution of these variables and texture characteristics in relation to the applied loading


Meso-scale Framework for Modeling Granular Material Using Computed Tomography

Meso-scale Framework for Modeling Granular Material Using Computed Tomography
Author:
Publisher:
Total Pages: 7
Release: 2016
Genre:
ISBN:

Download Meso-scale Framework for Modeling Granular Material Using Computed Tomography Book in PDF, ePub and Kindle

Numerical modeling of unconsolidated granular materials is comprised of multiple nonlinear phenomena. Accurately capturing these phenomena, including grain deformation and intergranular forces depends on resolving contact regions several orders of magnitude smaller than the grain size. Here, we investigate a method for capturing the morphology of the individual particles using computed X-ray and neutron tomography, which allows for accurate characterization of the interaction between grains. The ability of these numerical approaches to determine stress concentrations at grain contacts is important in order to capture catastrophic splitting of individual grains, which has been shown to play a key role in the plastic behavior of the granular material on the continuum level. Discretization approaches, including mesh refinement and finite element type selection are presented to capture high stress concentrations at contact points between grains. The effect of a grain's coordination number on the stress concentrations is also investigated.


Mesoscale Modeling and Direct Simulation of Explosively Dispersed Granular Materials

Mesoscale Modeling and Direct Simulation of Explosively Dispersed Granular Materials
Author: Huangrui Mo
Publisher:
Total Pages: 124
Release: 2019
Genre: Dynamics of a particle
ISBN:

Download Mesoscale Modeling and Direct Simulation of Explosively Dispersed Granular Materials Book in PDF, ePub and Kindle

Explosively dispersed granular materials frequently exhibit macroscale coherent particle clustering and jetting structures. The underlying mechanism is of significant interest to study instability and mixing in high-speed gas-solid flows but remains unclear, primarily attributed to the complex mesoscale multiphase interactions involved in the dispersal process. In order to advance the understanding of particle clustering and jetting instabilities, this thesis establishes a numerical framework for solving interface-resolved gas-solid flows with non-deforming bodies that are able to move, contact, and collide. The developed framework is implemented to create a computational solver and then verified using a variety of gas-solid flow problems at different geometric scales. Employing the developed framework and solver, this thesis further studies the particle clustering and jetting instabilities in explosively dispersed granular materials. A Cartesian, 3D, high-resolution, parallelized, gas-solid flow solver is created with the capability of tackling shocked flow conditions, irregular and moving geometries, and multibody collisions. The underlying numerical framework integrates operator splitting for partitioned fluid-solid interaction in the time domain, 2nd/3rd order strong stability-preserving Runge--Kutta methods and 3rd/5th order weighted essentially nonoscillatory schemes for high-resolution tempo-spatial discretization, the front-tracking method for evolving phase interfaces, a new field function developed for facilitating the solution of complex and dynamic fluid-solid systems on Cartesian grids, a new collision model developed for deterministic multibody contact and collision with parameterized coefficients of restitution and friction, and a new immersed boundary method developed for treating arbitrarily irregular and moving boundaries. The developed framework and solver are able to accurately, efficiently, and robustly solve coupled fluid-fluid, fluid-solid, and solid-solid interactions with flow conditions ranging from subsonic to hypersonic states. Employing the developed framework and solver, direct simulations that capture interface-resolved multiphase interactions and deterministic mesoscale granular dynamics are conducted to investigate particle clustering and jetting instabilities. A random sampling algorithm is employed to generate stochastic payload morphologies with randomly distributed particle positions and sizes. Through solving and analyzing cases that cover a set of stochastic payloads, burster states, and coefficients of restitution, a valid statistical dissipative property of the framework in solving explosively dispersed granular materials with respect to Gurney velocity is demonstrated. The predicted surface expansion velocities can extend the time range of the velocity scaling law with regard to Gurney energy in the Gurney theory from the steady-state termination phase to the unsteady evolution phase. When considering the mean surface expansion velocities, the maximum error of the unsteady velocity scaling law is about $0.792\%$ among the investigated Gurney energies. In addition, a dissipation analysis of the current discrete modeling of granular payloads suggests that incorporating the effects of porosity can enhance the prediction of Gurney velocity for explosively dispersed granular payloads. On the basis of direct simulations, an explanation for particle clustering and jetting instabilities is proposed to increase the understanding of established experimental observations in the literature. Results suggest that the development of internal sliding and colliding lines in the shock-compacted granular payload can be critical to the subsequent fracture pattern of the payload. Particle clusters manifested through payload fracture are then maintained by local pressure gradient between surrounding and interstitial flows as well as by dissipative inter-grain collisions. The existence of stable clusters introduce a more non-equilibrium momentum distribution in the overall payload, exhibiting as a form of clustering instability. Under the current assumptions of non-deformable grains, the mesoscale granular dynamics largely depends on the payload morphology as a result of packing methods. Different payload morphologies can develop varied sliding and colliding lines, which lead to a corresponding pattern for payload fracturing and particle clustering. With the rapid development of high-performance computing technology, future direct simulations on stochastic payloads with significantly increased domain sizes, number of particles, and solution times are expected to lead to a better understanding of the flow instability in explosively dispersed granular payloads. It is suggested that statistics collected from a large number of mesoscale computations based on random payload morphologies can potentially evolve into a macroscopic theory of multiphase flow instability for particle clustering and jetting phenomena widely observed in many areas involving dense gas-solid flows.


Shock Phenomena in Granular and Porous Materials

Shock Phenomena in Granular and Porous Materials
Author: Tracy J. Vogler
Publisher: Springer Nature
Total Pages: 294
Release: 2019-09-04
Genre: Science
ISBN: 3030230023

Download Shock Phenomena in Granular and Porous Materials Book in PDF, ePub and Kindle

Granular forms of common materials such as metals and ceramics, sands and soils, porous energetic materials (explosives, reactive mixtures), and foams exhibit interesting behaviors due to their heterogeneity and critical length scale, typically commensurate with the grain or pore size. Under extreme conditions of impact, granular and porous materials display highly localized phenomena such as fracture, inelastic deformation, and the closure of voids, which in turn strongly influence the bulk response. Due to the complex nature of these interactions and the short time scales involved, computational methods have proven to be powerful tools to investigate these phenomena. Thus, the coupled use of experiment, theory, and simulation is critical to advancing our understanding of shock processes in initially porous and granular materials. This is a comprehensive volume on granular and porous materials for researchers working in the area of shock and impact physics. The book is divided into three sections, where the first presents the fundamentals of shock physics as it pertains to the equation of state, compaction, and strength properties of porous materials. Building on these fundamentals, the next section examines several applications where dynamic processes involving initially porous materials are prevalent, focusing on the areas of penetration, planetary impact, and reactive munitions. The final section provides a look at emerging areas in the field, where the expansion of experimental and computational capabilities are opening the door for new opportunities in the areas of advanced light sources, molecular dynamics modeling, and additively manufactured porous structures. By intermixing experiment, theory, and simulation throughout, this book serves as an excellent, up-to-date desk reference for those in the field of shock compression science of porous and granular materials.


3D Multi-scale Behavior of Granular Materials Using Experimental and Numerical Techniques

3D Multi-scale Behavior of Granular Materials Using Experimental and Numerical Techniques
Author: Andrew Druckrey
Publisher:
Total Pages: 335
Release: 2016
Genre: Granular materials
ISBN:

Download 3D Multi-scale Behavior of Granular Materials Using Experimental and Numerical Techniques Book in PDF, ePub and Kindle

Constitutive modeling of granular material behavior has generally been based on global response of laboratory-size specimens or larger models with little understanding of the fundamental mechanics that drive the global response. Many studies have acknowledged the importance of micro-scale and meso-scale mechanics on the constitutive behavior of granular materials. However, much knowledge is still missing to develop and improve robust micromechanical constitutive models. The research in this dissertation contributes to this knowledge gap for many potential applications using novel experimental techniques to investigate the three-dimensional (3D) behavior of granular materials. Critical micromechanics measurements at multiple scales are investigated by combining 3D synchrotron micro-computed tomography (SMT), 3D image analysis, and finite element analysis (FEA). At the single particle level (micro-scale), particle fracture was examined at strain rates of 0.2 mm/min and 2 m/s using quasi-static unconfined compression, unconfined mini-Kolsky bar, and x-ray imaging techniques. Surface reconstructions of particles were generated and exported to Abaqus FEA software, where quasi-static and higher rate loading curves and crack propagation were simulated with good accuracy. Stress concentrations in oddly shaped particles during FEA simulations resulted in more realistic fracture stresses than theoretical models. A nonlinear multivariable statistical model was developed to predict force required to fracture individual particles with known internal structure and loading geometry. At the meso-scale, 3D SMT imaging during in-situ triaxial testing of granular materials were used to identify particle morphology, contacts, kinematics and interparticle behavior. Micro shear bands (MSB) were exposed during pre-peak stress using a new relative particle displacement concept developed in this dissertation. MSB for spherical particles (glass beads) had larger thickness (3d50 to 5d50) than that of angular sands (such as F35 Ottawa sand, MSB thickness of 1d50 to 3d50). Particle morphology also plays a significant role in the onset and growth of shear bands and global fabric evolution of granular materials. More spherical particles typically exhibit more homogeneous internal anisotropy. Fabric of particles within the shear band (at higher densities and confining pressures) exhibits a peak and decrease into steady-state. Also, experimental fabric produces more accurate strength and deformation predictions in constitutive models that incorporate fabric evolution.


Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics

Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics
Author: Francois Nicot
Publisher: Elsevier
Total Pages: 388
Release: 2017-11-20
Genre: Technology & Engineering
ISBN: 0081025963

Download Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics Book in PDF, ePub and Kindle

Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics reunites some of the most recent work from the French research group MeGe GDR (National Research Group on Multiscale and Multiphysics Couplings in Geo-Environmental Mechanics) on the theme of multi-scale and multi-physics modeling of geomaterials, with a special focus on micromechanical aspects. Its offers readers a glimpse into the current state of scientific knowledge in the field, together with the most up-to-date tools and methods of analysis available. Each chapter represents a study with a different viewpoint, alternating between phenomenological/micro-mechanically enriched and purely micromechanical approaches. Throughout the book, contributing authors will highlight advances in geomaterials modeling, while also pointing out practical implications for engineers. Topics discussed include multi-scale modeling of cohesive-less geomaterials, including multi-physical processes, but also the effects of particle breakage, large deformations on the response of the material at the specimen scale and concrete materials, together with clays as cohesive geomaterials. The book concludes by looking at some engineering problems involving larger scales. Identifies contributions in the field of geomechanics Focuses on multi-scale linkages at small scales Presents numerical simulations by discrete elements and tools of homogenization or change of scale


Mesoscale Modeling in Chemical Engineering Part II

Mesoscale Modeling in Chemical Engineering Part II
Author:
Publisher: Academic Press
Total Pages: 422
Release: 2016-02-16
Genre: Technology & Engineering
ISBN: 0128039310

Download Mesoscale Modeling in Chemical Engineering Part II Book in PDF, ePub and Kindle

Mesoscale Modeling in Chemical Engineering, a volume in the Advances in Chemical Engineering series provides the reader with personal views of authorities in the field. Subjects covered are not limited to the classical chemical engineering disciplines, with contributions connecting chemical engineering to related scientific fields, thus providing new ideas for additional thought. The book balances well developed areas such as process industry, transformation of materials, energy, and environmental issues with areas where applications of chemical engineering are more recent or emerging. Contains reviews by leading authorities in the respective areas Presents Up-to-date reviews of latest techniques in modeling of catalytic processes Includes a mix of US and European authors, as well as academic/industrial/research institute perspectives Contains the critical connections between computation and experimental methods