Geometric Algebraic And Topological Methods For Quantum Field Theory Proceedings Of The 2011 Villa De Leyva Summer School PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Geometric Algebraic And Topological Methods For Quantum Field Theory Proceedings Of The 2011 Villa De Leyva Summer School PDF full book. Access full book title Geometric Algebraic And Topological Methods For Quantum Field Theory Proceedings Of The 2011 Villa De Leyva Summer School.

Geometric, Algebraic and Topological Methods for Quantum Field Theory

Geometric, Algebraic and Topological Methods for Quantum Field Theory
Author: Sylvie Payche
Publisher: World Scientific
Total Pages: 378
Release: 2014
Genre: Science
ISBN: 9814460052

Download Geometric, Algebraic and Topological Methods for Quantum Field Theory Book in PDF, ePub and Kindle

Based on lectures held at the 7th Villa de Leyva summer school, this book presents an introduction to topics of current interest in the interface of geometry, topology and physics. It is aimed at graduate students in physics or mathematics with interests in geometric, algebraic as well as topological methods and their applications to quantum field theory. This volume contains the written notes corresponding to lectures given by experts in the field. They cover current topics of research in a way that is suitable for graduate students of mathematics or physics interested in the recent developments and interactions between geometry, topology and physics. The book also contains contributions by younger participants, displaying the ample range of topics treated in the school. A key feature of the present volume is the provision of a pedagogical presentation of rather advanced topics, in a way which is suitable for both mathematicians and physicists.


Geometric, Algebraic And Topological Methods For Quantum Field Theory - Proceedings Of The 2011 Villa De Leyva Summer School

Geometric, Algebraic And Topological Methods For Quantum Field Theory - Proceedings Of The 2011 Villa De Leyva Summer School
Author: Sylvie Paycha
Publisher: World Scientific
Total Pages: 378
Release: 2013-11-15
Genre: Mathematics
ISBN: 9814460060

Download Geometric, Algebraic And Topological Methods For Quantum Field Theory - Proceedings Of The 2011 Villa De Leyva Summer School Book in PDF, ePub and Kindle

Based on lectures held at the 7th Villa de Leyva summer school, this book presents an introduction to topics of current interest in the interface of geometry, topology and physics. It is aimed at graduate students in physics or mathematics with interests in geometric, algebraic as well as topological methods and their applications to quantum field theory.This volume contains the written notes corresponding to lectures given by experts in the field. They cover current topics of research in a way that is suitable for graduate students of mathematics or physics interested in the recent developments and interactions between geometry, topology and physics. The book also contains contributions by younger participants, displaying the ample range of topics treated in the school. A key feature of the present volume is the provision of a pedagogical presentation of rather advanced topics, in a way which is suitable for both mathematicians and physicists.


Modifications of Einstein's Theory of Gravity at Large Distances

Modifications of Einstein's Theory of Gravity at Large Distances
Author: Eleftherios Papantonopoulos
Publisher: Springer
Total Pages: 435
Release: 2014-11-04
Genre: Science
ISBN: 331910070X

Download Modifications of Einstein's Theory of Gravity at Large Distances Book in PDF, ePub and Kindle

In the last few years modified gravity theories have been proposed as extensions of Einstein's theory of gravity. Their main motivation is to explain the latest cosmological and astrophysical data on dark energy and dark matter. The study of general relativity at small scales has already produced important results (cf e.g. LNP 863 Quantum Gravity and Quantum Cosmology) while its study at large scales is challenging because recent and upcoming observational results will provide important information on the validity of these modified theories. In this volume, various aspects of modified gravity at large scales will be discussed: high-curvature gravity theories; general scalar-tensor theories; Galileon theories and their cosmological applications; F(R) gravity theories; massive, new massive and topologically massive gravity; Chern-Simons modifications of general relativity (including holographic variants) and higher-spin gravity theories, to name but a few of the most important recent developments. Edited and authored by leading researchers in the field and cast into the form of a multi-author textbook at postgraduate level, this volume will be of benefit to all postgraduate students and newcomers from neighboring disciplines wishing to find a comprehensive guide for their future research.


Feynman Integrals

Feynman Integrals
Author: Stefan Weinzierl
Publisher: Springer Nature
Total Pages: 852
Release: 2022-06-11
Genre: Science
ISBN: 3030995585

Download Feynman Integrals Book in PDF, ePub and Kindle

This textbook on Feynman integrals starts from the basics, requiring only knowledge of special relativity and undergraduate mathematics. Feynman integrals are indispensable for precision calculations in quantum field theory. At the same time, they are also fascinating from a mathematical point of view. Topics from quantum field theory and advanced mathematics are introduced as needed. The book covers modern developments in the field of Feynman integrals. Topics included are: representations of Feynman integrals, integration-by-parts, differential equations, intersection theory, multiple polylogarithms, Gelfand-Kapranov-Zelevinsky systems, coactions and symbols, cluster algebras, elliptic Feynman integrals, and motives associated with Feynman integrals. This volume is aimed at a) students at the master's level in physics or mathematics, b) physicists who want to learn how to calculate Feynman integrals (for whom state-of-the-art techniques and computations are provided), and c) mathematicians who are interested in the mathematical aspects underlying Feynman integrals. It is, indeed, the interwoven nature of their physical and mathematical aspects that make Feynman integrals so enthralling.


Topological Methods for Ordinary Differential Equations

Topological Methods for Ordinary Differential Equations
Author: Patrick Fitzpatrick
Publisher: Springer
Total Pages: 0
Release: 1993-03-08
Genre: Mathematics
ISBN: 9783540564614

Download Topological Methods for Ordinary Differential Equations Book in PDF, ePub and Kindle

The volume contains the texts of four courses, given by the authors at a summer school that sought to present the state of the art in the growing field of topological methods in the theory of o.d.e. (in finite and infinitedimension), and to provide a forum for discussion of the wide variety of mathematical tools which are involved. The topics covered range from the extensions of the Lefschetz fixed point and the fixed point index on ANR's, to the theory of parity of one-parameter families of Fredholm operators, and from the theory of coincidence degree for mappings on Banach spaces to homotopy methods for continuation principles. CONTENTS: P. Fitzpatrick: The parity as an invariant for detecting bifurcation of the zeroes of one parameter families of nonlinear Fredholm maps.- M. Martelli: Continuation principles and boundary value problems.- J. Mawhin: Topological degree and boundary value problems for nonlinear differential equations.- R.D. Nussbaum: The fixed point index and fixed point theorems.


Quantization, Geometry and Noncommutative Structures in Mathematics and Physics

Quantization, Geometry and Noncommutative Structures in Mathematics and Physics
Author: Alexander Cardona
Publisher: Springer
Total Pages: 347
Release: 2017-10-26
Genre: Science
ISBN: 3319654276

Download Quantization, Geometry and Noncommutative Structures in Mathematics and Physics Book in PDF, ePub and Kindle

This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.


Intuitive Concepts in Elementary Topology

Intuitive Concepts in Elementary Topology
Author: B.H. Arnold
Publisher: Courier Corporation
Total Pages: 194
Release: 2015-02-23
Genre: Mathematics
ISBN: 0486275760

Download Intuitive Concepts in Elementary Topology Book in PDF, ePub and Kindle

Classroom-tested and much-cited, this concise text is designed for undergraduates. It offers a valuable and instructive introduction to the basic concepts of topology, taking an intuitive rather than an axiomatic viewpoint. 1962 edition.


Equivariant Cohomology Theories

Equivariant Cohomology Theories
Author: Glen E. Bredon
Publisher: Springer
Total Pages: 72
Release: 2006-11-14
Genre: Mathematics
ISBN: 3540349731

Download Equivariant Cohomology Theories Book in PDF, ePub and Kindle

a


Chern-simons (Super)gravity

Chern-simons (Super)gravity
Author: Mokhtar Hassaine
Publisher: World Scientific
Total Pages: 149
Release: 2016-01-07
Genre: Science
ISBN: 9814730955

Download Chern-simons (Super)gravity Book in PDF, ePub and Kindle

'The authors provide an up-to-date, well-organised background and essential elements of supergravity notions as well as all relevant aspects of Chern-Simons forms in gravitation. The book is a self-contained, informative, and much-needed broad introduction into the latest quantum gravity concepts, with a main focus on Chern-Simons gravity and supersymmetry … The book represents a comprehensive and systematic pedagogical exposition on gravitational Chern-Simons (Super)gravity theories, their applications, together with a selection of related recent developments in the field.'Contemporary PhysicsThis book grew out of a set of lecture notes on gravitational Chern-Simons (CS) theories developed over the past decade for several schools and different audiences including graduate students and researchers.CS theories are gauge-invariant theories that can include gravity consistently. They are only defined in odd dimensions and represent a very special class of theories in the Lovelock family. Lovelock gravitation theories are the natural extensions of General Relativity for dimensions greater than four that yield second-order field equations for the metric. These theories also admit local supersymmetric extensions where supersymmetry is an off-shell symmetry of the action, as in a standard gauge theory.Apart from the arguments of mathematical elegance and beauty, the gravitational CS actions are exceptionally endowed with physical attributes that suggest the viability of a quantum interpretation. CS theories are gauge-invariant, scale-invariant and background independent; they have no dimensional coupling constants. All constants in the Lagrangian are fixed rational coefficients that cannot be adjusted without destroying gauge invariance. This exceptional status of CS systems makes them classically interesting to study, and quantum mechanically intriguing and promising.