Geochemical And Biogeochemical Reaction Modeling PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Geochemical And Biogeochemical Reaction Modeling PDF full book. Access full book title Geochemical And Biogeochemical Reaction Modeling.

Geochemical and Biogeochemical Reaction Modeling

Geochemical and Biogeochemical Reaction Modeling
Author: Craig M. Bethke
Publisher: Cambridge University Press
Total Pages: 564
Release: 2010-12-09
Genre: Science
ISBN: 1139468324

Download Geochemical and Biogeochemical Reaction Modeling Book in PDF, ePub and Kindle

This book provides a comprehensive overview of reaction processes in the Earth's crust and on its surface, both in the laboratory and in the field. A clear exposition of the underlying equations and calculation techniques is balanced by a large number of fully worked examples. The book uses The Geochemist's Workbench® modeling software, developed by the author and already installed at over 1000 universities and research facilities worldwide. Since publication of the first edition, the field of reaction modeling has continued to grow and find increasingly broad application. In particular, the description of microbial activity, surface chemistry, and redox chemistry within reaction models has become broader and more rigorous. These areas are covered in detail in this new edition, which was originally published in 2007. This text is written for graduate students and academic researchers in the fields of geochemistry, environmental engineering, contaminant hydrology, geomicrobiology, and numerical modeling.


Geochemical and Biogeochemical Reaction Modeling

Geochemical and Biogeochemical Reaction Modeling
Author: Craig M. Bethke
Publisher: Cambridge University Press
Total Pages: 526
Release: 2022-01-06
Genre: Science
ISBN: 1108848370

Download Geochemical and Biogeochemical Reaction Modeling Book in PDF, ePub and Kindle

An indispensable primer and reference textbook, the third edition of Geochemical and Biogeochemical Reaction Modeling carries the reader from the field's origins and theoretical underpinnings through to a collection of fully worked examples. A clear exposition of the underlying equations and calculation techniques is balanced by real-world example calculations. The book depicts geochemical reaction modeling as a vibrant field of study applicable to a wide spectrum of issues of scientific, practical, and societal concern. The new edition offers a thorough description of surface complexation modeling, including two- and three-layer methods; broader treatment of kinetic rate laws; the effect of stagnant zones on transport; and techniques for determining gas partial pressures. This handbook demystifies and makes broadly accessible an elegant technique for portraying chemical processes in the geosphere. It will again prove to be invaluable for geochemists, environmental scientists and engineers, aqueous and surface chemists, microbiologists, university teachers, and government regulators.


Geochemical Reaction Modeling

Geochemical Reaction Modeling
Author: Craig M. Bethke
Publisher: Oxford University Press
Total Pages: 417
Release: 1996-05-09
Genre: Science
ISBN: 0198025505

Download Geochemical Reaction Modeling Book in PDF, ePub and Kindle

Geochemical reaction modeling plays an increasingly vital role in several areas of geoscience, from environmental geochemistry and petroleum geology to the study of geothermal and hydrothermal fluids. This book provides an up-to-date overview of the use of numerical methods to model reaction processes in the Earth's crust and on its surface. Early chapters develop the theoretical foundations of the field, derive a set of governing equations, and show how numerical methods can be used to solve these equations. Other chapters discuss the distribution of species in natural waters; methods for computing activity coefficients in dilute solutions and in brines; the complexation of ions into mineral surfaces; the kinetics of precipitation and dissolution reactions; and the fractionation of stable isotopes. Later chapters provide a large number of fully worked calculation examples and case studies demonstrating the modeling techniques that can be applied to scientific and practical problems. Students in a variety of specialties from low-temperature geochemistry to groundwater hydrology will benefit from the wealth of information and practical applications this book has to offer.


Geochemical and Biogeochemical Reaction Modeling

Geochemical and Biogeochemical Reaction Modeling
Author: Craig Bethke
Publisher:
Total Pages: 543
Release: 2008
Genre: Chemical reactions
ISBN: 9780511374739

Download Geochemical and Biogeochemical Reaction Modeling Book in PDF, ePub and Kindle

A fundamental reference for graduate students and researchers working on reaction processes in the geosciences.


Geochemical Modeling of Groundwater, Vadose and Geothermal Systems

Geochemical Modeling of Groundwater, Vadose and Geothermal Systems
Author: Jochen Bundschuh
Publisher: CRC Press
Total Pages: 336
Release: 2011-12-23
Genre: Technology & Engineering
ISBN: 0415668107

Download Geochemical Modeling of Groundwater, Vadose and Geothermal Systems Book in PDF, ePub and Kindle

Geochemical modeling is an important tool in environmental studies, and in the areas of subsurface and surface hydrology, pedology, water resources management, mining geology, geothermal resources, hydrocarbon geology, and related areas dealing with the exploration and extraction of natural resources. The book fills a gap in the literature through its discussion of geochemical modeling, which simulates the chemical and physical processes affecting the distribution of chemical species in liquid, gas, and solid phases. Geochemical modeling applies to a diversity of subsurface environments, from the vadose zone close to the Earth’s surface, down to deep-seated geothermal reservoirs. This book provides the fundamental thermodynamic concepts of liquid-gas-solid phase systems. It introduces the principal types of geochemical models, such as speciation, reaction-path or forward, inverse- and reactive-transport models, together with examples of the most common codes and the best-practices for constructing geochemical models. The physical laws describing homogeneous and heterogeneous chemical reactions, their kinetics, and the transport of reactive solutes are presented. The partial differential or algebraic equations representing these laws, and the principal numerical methods that allow approximate solutions of these equations that can provide useful solutions to model different geochemical processes, are discussed in detail. Case studies applying geochemical models in different scientific areas and environmental settings, conclude the book. The book is addressed to students, teachers, other professionals, and to the institutions involved in water, geothermal and hydrocarbon resources, mining, and environmental management. The book should prove useful to undergraduate and graduate students, postgraduates, professional geologists and geophysicists, engineers, environmental scientists, soil scientists, hydrochemists, and others interested in water and geochemistry.


Environmental Applications of Geochemical Modeling

Environmental Applications of Geochemical Modeling
Author: Chen Zhu
Publisher: Cambridge University Press
Total Pages: 302
Release: 2002-05-13
Genre: Science
ISBN: 9780521005777

Download Environmental Applications of Geochemical Modeling Book in PDF, ePub and Kindle

An application of geochemical modeling to environmental problems, illustrated with case studies of real-world environmental investigations.


Groundwater Geochemistry

Groundwater Geochemistry
Author: Broder J. Merkel
Publisher: Springer Science & Business Media
Total Pages: 230
Release: 2008-05-30
Genre: Science
ISBN: 3540746684

Download Groundwater Geochemistry Book in PDF, ePub and Kindle

To understand hydrochemistry and to analyze natural as well as man-made impacts on aquatic systems, hydrogeochemical models have been used since the 1960’s and more frequently in recent times. Numerical groundwater flow, transport, and geochemical models are important tools besides classical deterministic and analytical approaches. Solving complex linear or non-linear systems of equations, commonly with hundreds of unknown parameters, is a routine task for a PC. Modeling hydrogeochemical processes requires a detailed and accurate water analysis, as well as thermodynamic and kinetic data as input. Thermodynamic data, such as complex formation constants and solubility-products, are often provided as databases within the respective programs. However, the description of surface-controlled reactions (sorption, cation exchange, surface complexation) and kinetically controlled reactions requires additional input data. Unlike groundwater flow and transport models, thermodynamic models, in principal, do not need any calibration. However, considering surface-controlled or kinetically controlled reaction models might be subject to calibration. Typical problems for the application of geochemical models are: • speciation • determination of saturation indices • adjustment of equilibria/disequilibria for minerals or gases • mixing of different waters • modeling the effects of temperature • stoichiometric reactions (e.g. titration) • reactions with solids, fluids, and gaseous phases (in open and closed systems) • sorption (cation exchange, surface complexation) • inverse modeling • kinetically controlled reactions • reactive transport Hydrogeochemical models depend on the quality of the chemical analysis, the boundary conditions presumed by the program, theoretical concepts (e.g.


Application of Transport-reaction Modeling to Constrain Biogeochemical Processes in Marine Sediments

Application of Transport-reaction Modeling to Constrain Biogeochemical Processes in Marine Sediments
Author: Wei-Li Hong
Publisher:
Total Pages: 176
Release: 2014
Genre: Carbon cycle (Biogeochemistry)
ISBN:

Download Application of Transport-reaction Modeling to Constrain Biogeochemical Processes in Marine Sediments Book in PDF, ePub and Kindle

Quantifying the mass transport through marine sediments, and the geochemical response to such flow with numerical models has become a common and powerful approach for geochemical data interpretation. In this dissertation, I developed and applied transport-reaction models to unravel complex and interdependent reactions involving carbon, sulfur and silica transformations in shallow marine sediments, and the impact of physical (mass transport deposits) and depositional events (volcanic ash input) on the overall geochemical state of the system. Carbon cycling in the gas hydrate bearing sediments of the Ulleung Basin was quantified using both box and kinetic modeling approaches. The box model balances mass, flux, and carbon isotopes of carbon (Chapter 2), and led to a better understanding of how methane is cycled in the marine sediments of this area. This effort demonstrates the significance of CO2 reduction, a previously overlooked reaction. The picture of reaction network derived from this work serves as the foundation for a transport-reaction model (Chapter 3). The kinetic model results revealed a very different biogeochemistry between two distinct fluid-flow environments. At sites where transport is predominantly diffusive (non-chimney environments), organic matter decomposition is the dominant process driving production of methane, dissolved inorganic carbon (DIC) and consumption of sulfate. In contrast, anaerobic oxidation of methane (AOM) drives both carbon and sulfur cycles in the advective settings characterized by acoustic chimneys indicative of gas transport. I show that methane produced within the model domain, through CO2 reduction and methanogenesis, fuels AOM in the non-chimney sites while AOM is primarily induced by methane from external sources at the chimney sites. A simulation of the system evolution from a non-chimney to a chimney condition was developed by increasing the bottom methane supply to an originally diffusion-controlled site. Results from this exercise show that the higher methane flux leads to a higher AOM activity, and enhanced organic matter decomposition through methanogenesis. Organic carbon cycling is also affected by changes in the depositional environment, as shown by application of the kinetic model to the sediments from the Krishna-Godavary (K-G) basin along the eastern Indian margin (Chapter 4). Proximity to large rivers results in the widespread occurrence of mass transport deposits (MTD) throughout the basin. In this work, MTD is defined as a fluidized sediment block whose pore water composition is identical to sea water value to reflect the homogenization process during sediment transport. The pore water sulfate and ammonium profiles measured at seven sites drilled in the K-G Basin during the NGHP-01 expedition were simulated to provide a quantitative description of how MTDs can affect geochemistry profiles, not only for sulfate and ammonium but potentially all pore water species. This model provides reliable estimates of the MTDs thickness, the time elapsed after the most recent event, and the organoclastic sulfate reduction rate at these seven sites. A transport-reaction modeling approach was also applied to investigate the silica diagenetic reactions fueled by volcanic ash decomposition in Shikuko Basin, Nankai Trough (Chapter 5). The model developed for this setting reproduces a silica diagenetic boundary (SDB) at each site, which is defined by marked decreases in reactive volcanic ash, pore water silica and potassium. Volcanic ash alteration was constrained by modeling pore water 87Sr/86Sr profiles. Below the SDB, formation of clinoptilolite consumes potassium and regulates the extension of amorphous silica by consuming SiO2(aq). The observed low SiO2(aq) and dissolved potassium in these deep sequences require continuous precipitation of clinoptilolite; however in order to maintain oversaturation of this mineral at the low SiO2(aq) in sediments below the SDB, an increase in pH is required, consistent with pore water observations. Thermal history, rather than temperature alone, controls the inferred reaction network as shown by the convergence of the thermal maturity of sediments at the SDB from all studied sites and is consistent with other locations documented onshore Japan. These results are valuable as we move forward in understanding the mechanisms and consequences of ash alteration in convergent margins worldwide.


Treatise on Geochemistry

Treatise on Geochemistry
Author:
Publisher: Newnes
Total Pages: 17318
Release: 2013-10-19
Genre: Science
ISBN: 0080983006

Download Treatise on Geochemistry Book in PDF, ePub and Kindle

This extensively updated new edition of the widely acclaimed Treatise on Geochemistry has increased its coverage beyond the wide range of geochemical subject areas in the first edition, with five new volumes which include: the history of the atmosphere, geochemistry of mineral deposits, archaeology and anthropology, organic geochemistry and analytical geochemistry. In addition, the original Volume 1 on "Meteorites, Comets, and Planets" was expanded into two separate volumes dealing with meteorites and planets, respectively. These additions increased the number of volumes in the Treatise from 9 to 15 with the index/appendices volume remaining as the last volume (Volume 16). Each of the original volumes was scrutinized by the appropriate volume editors, with respect to necessary revisions as well as additions and deletions. As a result, 27% were republished without major changes, 66% were revised and 126 new chapters were added. In a many-faceted field such as Geochemistry, explaining and understanding how one sub-field relates to another is key. Instructors will find the complete overviews with extensive cross-referencing useful additions to their course packs and students will benefit from the contextual organization of the subject matter Six new volumes added and 66% updated from 1st edition. The Editors of this work have taken every measure to include the many suggestions received from readers and ensure comprehensiveness of coverage and added value in this 2nd edition The esteemed Board of Volume Editors and Editors-in-Chief worked cohesively to ensure a uniform and consistent approach to the content, which is an amazing accomplishment for a 15-volume work (16 volumes including index volume)!