Fusion Of Hard And Soft Control Strategies For The Robotic Hand PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fusion Of Hard And Soft Control Strategies For The Robotic Hand PDF full book. Access full book title Fusion Of Hard And Soft Control Strategies For The Robotic Hand.

Fusion of Hard and Soft Control Strategies for the Robotic Hand

Fusion of Hard and Soft Control Strategies for the Robotic Hand
Author: Cheng-Hung Chen
Publisher:
Total Pages:
Release: 2017
Genre: TECHNOLOGY & ENGINEERING
ISBN: 9781119273622

Download Fusion of Hard and Soft Control Strategies for the Robotic Hand Book in PDF, ePub and Kindle

An in-depth review of hybrid control techniques for smart prosthetic hand technology by two of the world's pioneering experts in the field Long considered the stuff of science fiction, a prosthetic hand capable of fully replicating all of that appendage's various functions is closer to becoming reality than ever before. This book provides a comprehensive report on exciting recent developments in hybrid control techniques--one of the most crucial hurdles to be overcome in creating smart prosthetic hands. Coauthored by two of the world's foremost pioneering experts in the field, Fusion of Hard and Soft Control Strategies for the Robotic Hand treats robotic hands for multiple applications. It begins with an overview of advances in main control techniques that have been made over the past decade before addressing the military context for affordable robotic hand technology with tactile and/or proprioceptive feedback for hand amputees. Kinematics, homogeneous transformations, inverse and differential kinematics, trajectory planning, and dynamic models of two-link thumb and three-link index finger are discussed in detail. The remainder of the book is devoted to the most promising soft computing techniques, particle swarm optimization techniques, and strategies combining hard and soft controls. In addition, the book: . Includes a report on exciting new developments in prosthetic/robotic hand technology, with an emphasis on the fusion of hard and soft control strategies. Covers both prosthetic and nonprosthetic hand designs for everything from routine human operations, robotic surgery, and repair and maintenance, to hazardous materials handling, space applications, explosives disposal, and more. Provides a comprehensive overview of five-fingered robotic hand technology kinematics, dynamics, and control. Features detailed coverage of important recent developments in neuroprosthetics Fusion of Hard and Soft Control Strategies for the Robotic Hand is a must-read for researchers in control engineering, robotic engineering, biomedical sciences and engineering, and rehabilitation engineering.


Fusion of Hard and Soft Control Strategies for the Robotic Hand

Fusion of Hard and Soft Control Strategies for the Robotic Hand
Author: Cheng-Hung Chen
Publisher: John Wiley & Sons
Total Pages: 260
Release: 2017-08-31
Genre: Technology & Engineering
ISBN: 1119273609

Download Fusion of Hard and Soft Control Strategies for the Robotic Hand Book in PDF, ePub and Kindle

An in-depth review of hybrid control techniques for smart prosthetic hand technology by two of the world’s pioneering experts in the field Long considered the stuff of science fiction, a prosthetic hand capable of fully replicating all of that appendage’s various functions is closer to becoming reality than ever before. This book provides a comprehensive report on exciting recent developments in hybrid control techniques—one of the most crucial hurdles to be overcome in creating smart prosthetic hands. Coauthored by two of the world’s foremost pioneering experts in the field, Fusion of Hard and Soft Control Strategies for Robotic Hand treats robotic hands for multiple applications. Itbegins withan overview of advances in main control techniques that have been made over the past decade before addressing the military context for affordable robotic hand technology with tactile and/or proprioceptive feedback for hand amputees. Kinematics, homogeneous transformations, inverse and differential kinematics, trajectory planning, and dynamic models of two-link thumb and three-link index finger are discussed in detail. The remainder of the book is devoted to the most promising soft computing techniques, particle swarm optimization techniques, and strategies combining hard and soft controls. In addition, the book: Includes a report on exciting new developments in prosthetic/robotic hand technology, with an emphasis on the fusion of hard and soft control strategies Covers both prosthetic and non-prosthetic hand designs for everything from routine human operations, robotic surgery, and repair and maintenance, to hazardous materials handling, space applications, explosives disposal, and more Provides a comprehensive overview of five-fingered robotic hand technology kinematics, dynamics, and control Features detailed coverage of important recent developments in neuroprosthetics Fusion of Hard and Soft Control Strategies for Robotic Hand is a must-read for researchers in control engineering, robotic engineering, biomedical sciences and engineering, and rehabilitation engineering.


Fusion of Hard and Soft Control Strategies for the Robotic Hand

Fusion of Hard and Soft Control Strategies for the Robotic Hand
Author: Cheng-Hung Chen
Publisher: John Wiley & Sons
Total Pages: 256
Release: 2017-10-09
Genre: Technology & Engineering
ISBN: 1119273595

Download Fusion of Hard and Soft Control Strategies for the Robotic Hand Book in PDF, ePub and Kindle

An in-depth review of hybrid control techniques for smart prosthetic hand technology by two of the world’s pioneering experts in the field Long considered the stuff of science fiction, a prosthetic hand capable of fully replicating all of that appendage’s various functions is closer to becoming reality than ever before. This book provides a comprehensive report on exciting recent developments in hybrid control techniques—one of the most crucial hurdles to be overcome in creating smart prosthetic hands. Coauthored by two of the world’s foremost pioneering experts in the field, Fusion of Hard and Soft Control Strategies for Robotic Hand treats robotic hands for multiple applications. Itbegins withan overview of advances in main control techniques that have been made over the past decade before addressing the military context for affordable robotic hand technology with tactile and/or proprioceptive feedback for hand amputees. Kinematics, homogeneous transformations, inverse and differential kinematics, trajectory planning, and dynamic models of two-link thumb and three-link index finger are discussed in detail. The remainder of the book is devoted to the most promising soft computing techniques, particle swarm optimization techniques, and strategies combining hard and soft controls. In addition, the book: Includes a report on exciting new developments in prosthetic/robotic hand technology, with an emphasis on the fusion of hard and soft control strategies Covers both prosthetic and non-prosthetic hand designs for everything from routine human operations, robotic surgery, and repair and maintenance, to hazardous materials handling, space applications, explosives disposal, and more Provides a comprehensive overview of five-fingered robotic hand technology kinematics, dynamics, and control Features detailed coverage of important recent developments in neuroprosthetics Fusion of Hard and Soft Control Strategies for Robotic Hand is a must-read for researchers in control engineering, robotic engineering, biomedical sciences and engineering, and rehabilitation engineering.


Underactuated Robotic Hands

Underactuated Robotic Hands
Author: Lionel Birglen
Publisher: Springer Science & Business Media
Total Pages: 248
Release: 2008-02-11
Genre: Technology & Engineering
ISBN: 3540774580

Download Underactuated Robotic Hands Book in PDF, ePub and Kindle

This is a cornerstone publication in robotic grasping. The authors have developed an internationally recognized expertise in this area. Additionally, they designed and built several prototypes which attracted the attention of the scientific community. The purpose of this book is to summarize years of research and to present, in an attractive format, the expertise developed by the authors on a new technology for grasping which has achieved great success both in theory and in practice.


The Human Hand as an Inspiration for Robot Hand Development

The Human Hand as an Inspiration for Robot Hand Development
Author: Ravi Balasubramanian
Publisher: Springer
Total Pages: 573
Release: 2014-01-03
Genre: Technology & Engineering
ISBN: 3319030175

Download The Human Hand as an Inspiration for Robot Hand Development Book in PDF, ePub and Kindle

“The Human Hand as an Inspiration for Robot Hand Development” presents an edited collection of authoritative contributions in the area of robot hands. The results described in the volume are expected to lead to more robust, dependable, and inexpensive distributed systems such as those endowed with complex and advanced sensing, actuation, computation, and communication capabilities. The twenty-four chapters discuss the field of robotic grasping and manipulation viewed in light of the human hand’s capabilities and push the state-of-the-art in robot hand design and control. Topics discussed include human hand biomechanics, neural control, sensory feedback and perception, and robotic grasp and manipulation. This book will be useful for researchers from diverse areas such as robotics, biomechanics, neuroscience, and anthropologists.


Intelligent Sensor-Based Manipulation with Robotic Hands

Intelligent Sensor-Based Manipulation with Robotic Hands
Author: Peter K. Allen
Publisher:
Total Pages: 9
Release: 1998
Genre:
ISBN:

Download Intelligent Sensor-Based Manipulation with Robotic Hands Book in PDF, ePub and Kindle

Our hand research has focused on enhancing the dexterity of robotic hands and understanding the nature of dexterous manipulation. The premise of the research is that incorporating task level understanding into a manipulation system simplifies robot planning and increases autonomy. The study of task level strategies for dexterous manipulation has led to development of several novel techniques for controlling the fingertip forces during manipulation and fingertip motion planning. The insights into increased autonomy have led to the development of a novel technique for teleoperating robot hands. The traditional technique of teleoperating a robot hand is to use a Dataglove or exoskeleton master; there is a direct mapping from the human hand to the robot hand. This approach has several limitations which we have addressed by using a simpler control interface with a joystick or keyboard. Enhancing the robot hand's autonomy allows for simpler control strategies and gives it greater functionality than by traditional means. Control of the hand is shared between the user and the robot. We have developed a prototype teleoperation system using a Utah/MIT hand. Our research will ultimately have application in medicine and industry, for enhancement of prosthetic hands and the development of more complex robotic grippers.


Achieving Human-like Dexterity in Robotic Hands

Achieving Human-like Dexterity in Robotic Hands
Author: Taylor D. Niehues
Publisher:
Total Pages: 266
Release: 2017
Genre:
ISBN:

Download Achieving Human-like Dexterity in Robotic Hands Book in PDF, ePub and Kindle

The human hand's unique biomechanical structure and neuromuscular control combine to produce amazing dexterous capabilities in a way that is still not fully understood. The Anatomically Correct Testbed (ACT) hand is a robotic system that is designed as a physical simulation of the human hand, and can help us examine and potentially uncover the roles of biomechanics and neural control in achieving dexterity. In this dissertation, I utilize the ACT hand and other robotic systems to explore the underlying sources of human hand dexterity, with the goal of understanding the fundamental differences between robotic and human hands in terms of (i) mechanical joint/tendon structure and (ii) control strategies. To begin, I develop comprehensive mechanical models that describe the musculoskeletal and tendon mechanics of the fingers and thumb of the human hand. Then, I work to isolate the contributions of biomechanical structure and neuromuscular control toward human dexterity. I have developed and implemented control strategies for achieving fine object manipulation first with the robotic hand of a space humanoid, Robonaut 2, and then with the ACT hand. I examined the unique control challenges, including uncontrollable joints and the requirement of accurate internal models, that arise due to the human hand's complex musculotendon structure and the potential advantages offered by the human hand's design, such as passive joint coupling to facilitate grasp shape adaptation and force production capabilities that are ideally suited for common manipulation tasks. Finally, inspired by the neuromuscular control strategies of the human hand, I have developed a novel hierarchical control strategy for the ACT hand and experimentally demonstrated improved grasp stability and manipulation capabilities compared to conventional robotic control laws. Through an in-depth exploration of human hand biomechanics and neuromuscular control, theoretical control analysis of robotic and human hands, and experimental demonstration of fine object manipulation, this work uncovers crucial insights into the sources of human hand dexterity that have the potential to drive innovative design and control strategies and bring robotic and prosthetic hands closer to human levels of dexterity.


Human and Robot Hands

Human and Robot Hands
Author: Matteo Bianchi
Publisher: Springer
Total Pages: 284
Release: 2016-02-24
Genre: Computers
ISBN: 331926706X

Download Human and Robot Hands Book in PDF, ePub and Kindle

This book looks at the common problems both human and robotic hands encounter when controlling the large number of joints, actuators and sensors required to efficiently perform motor tasks such as object exploration, manipulation and grasping. The authors adopt an integrated approach to explore the control of the hand based on sensorimotor synergies that can be applied in both neuroscience and robotics. Hand synergies are based on goal-directed, combined muscle and kinematic activation leading to a reduction of the dimensionality of the motor and sensory space, presenting a highly effective solution for the fast and simplified design of artificial systems. Presented in two parts, the first part, Neuroscience, provides the theoretical and experimental foundations to describe the synergistic organization of the human hand. The second part, Robotics, Models and Sensing Tools, exploits the framework of hand synergies to better control and design robotic hands and haptic/sensing systems/tools, using a reduced number of control inputs/sensors, with the goal of pushing their effectiveness close to the natural one. Human and Robot Hands provides a valuable reference for students, researchers and designers who are interested in the study and design of the artificial hand.


In-Hand Object Localization and Control: Enabling Dexterous Manipulation with Robotic Hands

In-Hand Object Localization and Control: Enabling Dexterous Manipulation with Robotic Hands
Author: Martin Pfanne
Publisher: Springer Nature
Total Pages: 213
Release: 2022-08-31
Genre: Technology & Engineering
ISBN: 3031069676

Download In-Hand Object Localization and Control: Enabling Dexterous Manipulation with Robotic Hands Book in PDF, ePub and Kindle

This book introduces a novel model-based dexterous manipulation framework, which, thanks to its precision and versatility, significantly advances the capabilities of robotic hands compared to the previous state of the art. This is achieved by combining a novel grasp state estimation algorithm, the first to integrate information from tactile sensing, proprioception and vision, with an impedance-based in-hand object controller, which enables leading manipulation capabilities, including finger gaiting. The developed concept is implemented on one of the most advanced robotic manipulators, the DLR humanoid robot David, and evaluated in a range of challenging real-world manipulation scenarios and tasks. This book greatly benefits researchers in the field of robotics that study robotic hands and dexterous manipulation topics, as well as developers and engineers working on industrial automation applications involving grippers and robotic manipulators.