Frequency Domain Self Adjoint S Parameter Sensitivity Analysis For Microwave Design PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Frequency Domain Self Adjoint S Parameter Sensitivity Analysis For Microwave Design PDF full book. Access full book title Frequency Domain Self Adjoint S Parameter Sensitivity Analysis For Microwave Design.

Introduction to Microwave Imaging

Introduction to Microwave Imaging
Author: Natalia K. Nikolova
Publisher: Cambridge University Press
Total Pages: 364
Release: 2017-07-13
Genre: Technology & Engineering
ISBN: 1108380387

Download Introduction to Microwave Imaging Book in PDF, ePub and Kindle

With this self-contained, introductory text, readers will easily understand the fundamentals of microwave and radar image generation. Written with the complete novice in mind, and including an easy-to-follow introduction to electromagnetic scattering theory, it covers key topics such as forward models of scattering for interpreting S-parameter and time-dependent voltage data, S-parameters and their analytical sensitivity formulae, basic methods for real-time image reconstruction using frequency-sweep and pulsed-radar signals, and metrics for evaluating system performance. Numerous application examples and practical tutorial exercises provided throughout allow quick understanding of key concepts, and sample MATLAB codes implementing key reconstruction algorithms accompany the book online. This one-stop resource is ideal for graduate students taking introductory courses in microwave imaging, as well as researchers and industry professionals wanting to learn the fundamentals of the field.


Simulation-driven Design Optimization And Modeling For Microwave Engineering

Simulation-driven Design Optimization And Modeling For Microwave Engineering
Author: Qi-jun Zhang
Publisher: World Scientific
Total Pages: 526
Release: 2013-03-14
Genre: Technology & Engineering
ISBN: 1848169221

Download Simulation-driven Design Optimization And Modeling For Microwave Engineering Book in PDF, ePub and Kindle

Computer-aided full-wave electromagnetic (EM) analysis has been used in microwave engineering for the past decade. Initially, its main application area was design verification. Today, EM-simulation-driven optimization and design closure become increasingly important due to the complexity of microwave structures and increasing demands for accuracy. In many situations, theoretical models of microwave structures can only be used to yield the initial designs that need to be further fine-tuned to meet given performance requirements. In addition, EM-based design is a must for a growing number of microwave devices such as ultra-wideband (UWB) antennas, dielectric resonator antennas and substrate-integrated circuits. For circuits like these, no design-ready theoretical models are available, so design improvement can only be obtained through geometry adjustments based on repetitive, time-consuming simulations. On the other hand, various interactions between microwave devices and their environment, such as feeding structures and housing, must be taken into account, and this is only possible through full-wave EM analysis.Electromagnetic simulations can be highly accurate, but they tend to be computationally expensive. Therefore, practical design optimization methods have to be computationally efficient, so that the number of CPU-intensive high-fidelity EM simulations is reduced as much as possible during the design process. For the same reasons, techniques for creating fast yet accurate models of microwave structures become crucially important.In this edited book, the authors strive to review the state-of-the-art simulation-driven microwave design optimization and modeling. A group of international experts specialized in various aspects of microwave computer-aided design summarize and review a wide range of the latest developments and real-world applications. Topics include conventional and surrogate-based design optimization techniques, methods exploiting adjoint sensitivity, simulation-based tuning, space mapping, and several modeling methodologies, such as artificial neural networks and kriging. Applications and case studies include microwave filters, antennas, substrate integrated structures and various active components and circuits. The book also contains a few introductory chapters highlighting the fundamentals of optimization and modeling, gradient-based and derivative-free algorithms, metaheuristics, and surrogate-based optimization techniques, as well as finite difference and finite element methods./a


Computational Nanotechnology Using Finite Difference Time Domain

Computational Nanotechnology Using Finite Difference Time Domain
Author: Sarhan M. Musa
Publisher: CRC Press
Total Pages: 402
Release: 2017-12-19
Genre: Science
ISBN: 1466583622

Download Computational Nanotechnology Using Finite Difference Time Domain Book in PDF, ePub and Kindle

The Finite Difference Time Domain (FDTD) method is an essential tool in modeling inhomogeneous, anisotropic, and dispersive media with random, multilayered, and periodic fundamental (or device) nanostructures due to its features of extreme flexibility and easy implementation. It has led to many new discoveries concerning guided modes in nanoplasmonic waveguides and continues to attract attention from researchers across the globe. Written in a manner that is easily digestible to beginners and useful to seasoned professionals, Computational Nanotechnology Using Finite Difference Time Domain describes the key concepts of the computational FDTD method used in nanotechnology. The book discusses the newest and most popular computational nanotechnologies using the FDTD method, considering their primary benefits. It also predicts future applications of nanotechnology in technical industry by examining the results of interdisciplinary research conducted by world-renowned experts. Complete with case studies, examples, supportive appendices, and FDTD codes accessible via a companion website, Computational Nanotechnology Using Finite Difference Time Domain not only delivers a practical introduction to the use of FDTD in nanotechnology but also serves as a valuable reference for academia and professionals working in the fields of physics, chemistry, biology, medicine, material science, quantum science, electrical and electronic engineering, electromagnetics, photonics, optical science, computer science, mechanical engineering, chemical engineering, and aerospace engineering.


Adjoint Sensitivity Analysis of High Frequency Structures with MATLAB®

Adjoint Sensitivity Analysis of High Frequency Structures with MATLAB®
Author: Mohamed H. Bakr
Publisher: IET
Total Pages: 280
Release: 2017-03-24
Genre: Mathematics
ISBN: 1613532318

Download Adjoint Sensitivity Analysis of High Frequency Structures with MATLAB® Book in PDF, ePub and Kindle

This unique reference is the first to cover the theory of adjoint sensitivity analysis and explains how it can be applied to different types of electromagnetic structures. It is an invaluable book for anyone looking for an in-depth understanding of this useful theory for application in high-frequency electromagnetic problems. It uses the popular FDTD method to show how wideband sensitivities can be efficiently estimated for different types of materials and structures, and includes plenty of well-explained MATLAB(R) examples to help readers absorb the content more easily. Topics covered include a review of FDTD and an introduction to adjoint sensitivity analysis; sensitivity of the fields to changes in material parameters; sensitivity of S parameters; extension to dispersive material parameters, where the underlying FDTD algorithm must be modified; second-order sensitivity analysis; time-domain responses; and applications to nonlinear and anisotropic materials. This book will make the theory more understandable to the broadest possible audience. It will be useful for researchers and advanced students involved in computational techniques for electromagnetics, and other disciplines such as microwave, optics, acoustics, and semiconductor modelling.


Advances in Time-Domain Computational Electromagnetic Methods

Advances in Time-Domain Computational Electromagnetic Methods
Author: Qiang Ren
Publisher: John Wiley & Sons
Total Pages: 724
Release: 2022-11-15
Genre: Science
ISBN: 1119808375

Download Advances in Time-Domain Computational Electromagnetic Methods Book in PDF, ePub and Kindle

Discover state-of-the-art time domain electromagnetic modeling and simulation algorithms Advances in Time-Domain Computational Electromagnetic Methods delivers a thorough exploration of recent developments in time domain computational methods for solving complex electromagnetic problems. The book discuses the main time domain computational electromagnetics techniques, including finite-difference time domain (FDTD), finite-element time domain (FETD), discontinuous Galerkin time domain (DGTD), time domain integral equation (TDIE), and other methods in electromagnetic, multiphysics modeling and simulation, and antenna designs. The book bridges the gap between academic research and real engineering applications by comprehensively surveying the full picture of current state-of-the-art time domain electromagnetic simulation techniques. Among other topics, it offers readers discussions of automatic load balancing schemes for DG DG-FETD/SETD methods and convolution quadrature time domain integral equation methods for electromagnetic scattering. Advances in Time-Domain Computational Electromagnetic Methods also includes: Introductions to cylindrical, spherical, and symplectic FDTD, as well as FDTD for metasurfaces with GSTC and FDTD for nonlinear metasurfaces Explorations of FETD for dispersive and nonlinear media and SETD-DDM for periodic/quasi-periodic arrays Discussions of TDIE, including explicit marching-on-in-time solvers for second-kind time domain integral equations, TD-SIE DDM, and convolution quadrature time domain integral equation methods for electromagnetic scattering Treatments of deep learning, including time domain electromagnetic forward and inverse modeling using a differentiable programming platform Ideal for undergraduate and graduate students studying the design and development of various kinds of communication systems, as well as professionals working in these fields, Advances in Time-Domain Computational Electromagnetic Methods is also an invaluable resource for those taking advanced graduate courses in computational electromagnetic methods and simulation techniques.


Response Feature Technology for High-Frequency Electronics. Optimization, Modeling, and Design Automation

Response Feature Technology for High-Frequency Electronics. Optimization, Modeling, and Design Automation
Author: Anna Pietrenko-Dabrowska
Publisher: Springer Nature
Total Pages: 604
Release: 2023-10-16
Genre: Technology & Engineering
ISBN: 3031438450

Download Response Feature Technology for High-Frequency Electronics. Optimization, Modeling, and Design Automation Book in PDF, ePub and Kindle

This book discusses response feature technology and its applications to modeling, optimization, and computer-aided design of high-frequency structures including antenna and microwave components. By exploring the specific structure of the system outputs, feature-based approaches facilitate simulation-driven design procedures, both in terms of improving their computational efficiency and reliability. These benefits are associated with the weakly nonlinear relationship between feature point coordinates and design variables, which—in the context of optimization—leads to inherent regularization of the objective functions. The book provides an overview of the subject, a definition and extraction of characteristic points, and feature-based design problem reformulation. It also outlines a number of numerical algorithms developed to handle local, global, and multi-criterial design, surrogate modeling, as well as uncertainty quantification. The discussed frameworks are extensively illustrated using examples of real microwave and antenna structures, along with numerous design cases. Introductory material on simulation-driven design, numerical optimization, as well as behavioral and physics-based surrogate modeling is also included. The book will be useful for readers working in the area of high-frequency electronics, including microwave engineering, antenna design, microwave photonics, magnetism and especially those who utilize electromagnetic (EM) simulation models in their daily routines.


Microwave Differential Circuit Design Using Mixed-mode S-parameters

Microwave Differential Circuit Design Using Mixed-mode S-parameters
Author: William Richard Eisenstadt
Publisher: Artech House Publishers
Total Pages: 258
Release: 2006
Genre: Technology & Engineering
ISBN:

Download Microwave Differential Circuit Design Using Mixed-mode S-parameters Book in PDF, ePub and Kindle

Gain hands-on understanding of powerful new mixed-mode scattering parameter techniques and their applications in microwave circuit design, straight from the inventors of the techniques themselves. This groundbreaking resource uses the original research and application work in the field to describe mixed-mode S-parameter principles. Supported with over 150 illustrations, the book thoroughly explains practical techniques that help you more effectively analyze differential and multi-port systems; measure and describe multi-port circuit performance; and conduct differential circuit analyses for isolation, crosstalk, stability, noise reduction, and balance.