Frequency Domain Hybrid Finite Element Methods In Electromagnetics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Frequency Domain Hybrid Finite Element Methods In Electromagnetics PDF full book. Access full book title Frequency Domain Hybrid Finite Element Methods In Electromagnetics.

Frequency Domain Hybrid Finite Element Methods for Electromagnetics

Frequency Domain Hybrid Finite Element Methods for Electromagnetics
Author: John Leonidas Volakis
Publisher: Morgan & Claypool Publishers
Total Pages: 157
Release: 2006
Genre: Science
ISBN: 1598290800

Download Frequency Domain Hybrid Finite Element Methods for Electromagnetics Book in PDF, ePub and Kindle

This book provides a brief overview of the popular Finite Element Method (FEM) and its hybrid versions for electromagnetics with applications to radar scattering, antennas and arrays, guided structures, microwave components, frequency selective surfaces, periodic media, and RF materials characterizations and related topics. It starts by presenting concepts based on Hilbert and Sobolev spaces as well as Curl and Divergence spaces for generating matrices, useful in all engineering simulation methods. It then proceeds to present applications of the finite element and finite element-boundary integral methods for scattering and radiation. Applications to periodic media, metamaterials and bandgap structures are also included. The hybrid volume integral equation method for high contrast dielectrics and is presented for the first time. Another unique feature of the book is the inclusion of design optimization techniques and their integration within commercial numerical analysis packages for shape and material design. To aid the reader with the method's utility, an entire chapter is devoted to two-dimensional problems. The book can be considered as an update on the latest developments since the publication of our earlier book (Finite Element Method for Electromagnetics, IEEE Press, 1998). The latter is certainly complementary companion to this one.


Frequency Domain Hybrid Finite Element Methods in Electromagnetics

Frequency Domain Hybrid Finite Element Methods in Electromagnetics
Author: John Volakis
Publisher: Springer Nature
Total Pages: 148
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 3031016947

Download Frequency Domain Hybrid Finite Element Methods in Electromagnetics Book in PDF, ePub and Kindle

This book provides a brief overview of the popular Finite Element Method (FEM) and its hybrid versions for electromagnetics with applications to radar scattering, antennas and arrays, guided structures, microwave components, frequency selective surfaces, periodic media, and RF materials characterizations and related topics. It starts by presenting concepts based on Hilbert and Sobolev spaces as well as Curl and Divergence spaces for generating matrices, useful in all engineering simulation methods. It then proceeds to present applications of the finite element and finite element-boundary integral methods for scattering and radiation. Applications to periodic media, metamaterials and bandgap structures are also included. The hybrid volume integral equation method for high contrast dielectrics and is presented for the first time. Another unique feature of the book is the inclusion of design optimization techniques and their integration within commercial numerical analysis packages for shape and material design. To aid the reader with the method's utility, an entire chapter is devoted to two-dimensional problems. The book can be considered as an update on the latest developments since the publication of our earlier book (Finite Element Method for Electromagnetics, IEEE Press, 1998). The latter is certainly complementary companion to this one.


Finite Element Method Electromagnetics

Finite Element Method Electromagnetics
Author: John L. Volakis
Publisher: John Wiley & Sons
Total Pages: 364
Release: 1998-06-15
Genre: Science
ISBN: 9780780334250

Download Finite Element Method Electromagnetics Book in PDF, ePub and Kindle

Employed in a large number of commercial electromagnetic simulation packages, the finite element method is one of the most popular and well-established numerical techniques in engineering. This book covers the theory, development, implementation, and application of the finite element method and its hybrid versions to electromagnetics. FINITE ELEMENT METHOD FOR ELECTROMAGNETICS begins with a step-by-step textbook presentation of the finite method and its variations then goes on to provide up-to-date coverage of three dimensional formulations and modern applications to open and closed domain problems. Worked out examples are included to aid the reader with the fine features of the method and the implementation of its hybridization with other techniques for a robust simulation of large scale radiation and scattering. The crucial treatment of local boundary conditions is carefully worked out in several stages in the book. Sponsored by: IEEE Antennas and Propagation Society.


The Finite Element Method in Electromagnetics

The Finite Element Method in Electromagnetics
Author: Jian-Ming Jin
Publisher: John Wiley & Sons
Total Pages: 800
Release: 2015-02-18
Genre: Science
ISBN: 1118842022

Download The Finite Element Method in Electromagnetics Book in PDF, ePub and Kindle

A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.


Finite Elements for Wave Electromagnetics

Finite Elements for Wave Electromagnetics
Author: IEEE Antennas and Propagation Society
Publisher: Institute of Electrical & Electronics Engineers(IEEE)
Total Pages: 560
Release: 1994
Genre: Mathematics
ISBN:

Download Finite Elements for Wave Electromagnetics Book in PDF, ePub and Kindle


MATLAB-based Finite Element Programming in Electromagnetic Modeling

MATLAB-based Finite Element Programming in Electromagnetic Modeling
Author: Özlem Özgün
Publisher: CRC Press
Total Pages: 428
Release: 2018-09-03
Genre: Technology & Engineering
ISBN: 0429854609

Download MATLAB-based Finite Element Programming in Electromagnetic Modeling Book in PDF, ePub and Kindle

This book is a self-contained, programming-oriented and learner-centered book on finite element method (FEM), with special emphasis given to developing MATLAB® programs for numerical modeling of electromagnetic boundary value problems. It provides a deep understanding and intuition of FEM programming by means of step-by-step MATLAB® programs with detailed descriptions, and eventually enabling the readers to modify, adapt and apply the provided programs and formulations to develop FEM codes for similar problems through various exercises. It starts with simple one-dimensional static and time-harmonic problems and extends the developed theory to more complex two- or three-dimensional problems. It supplies sufficient theoretical background on the topic, and it thoroughly covers all phases (pre-processing, main body and post-processing) in FEM. FEM formulations are obtained for boundary value problems governed by a partial differential equation that is expressed in terms of a generic unknown function, and then, these formulations are specialized to various electromagnetic applications together with a post-processing phase. Since the method is mostly described in a general context, readers from other disciplines can also use this book and easily adapt the provided codes to their engineering problems. After forming a solid background on the fundamentals of FEM by means of canonical problems, readers are guided to more advanced applications of FEM in electromagnetics through a survey chapter at the end of the book. Offers a self-contained and easy-to-understand introduction to the theory and programming of finite element method. Covers various applications in the field of static and time-harmonic electromagnetics. Includes one-, two- and three-dimensional finite element codes in MATLAB®. Enables readers to develop finite element programming skills through various MATLAB® codes and exercises. Promotes self-directed learning skills and provides an effective instruction tool.


Quick Finite Elements for Electromagnetic Waves

Quick Finite Elements for Electromagnetic Waves
Author: Giuseppe Pelosi
Publisher: Artech House
Total Pages: 311
Release: 2009
Genre: Science
ISBN: 1596933461

Download Quick Finite Elements for Electromagnetic Waves Book in PDF, ePub and Kindle

The classic 1998 Artech House book, Quick Finite Elements for Electromagnetic Waves, has now been revised and expanded to bring you up-to-date with the latest developments in the Field. You find brand new discussions on finite elements in 3D, 3D resonant cavities, and 3D waveguide devices. Moreover, the second edition supplies you with MATLAB code, making this resource easier to comprehend and use for your projects in the field. This practical book and accompanying software enables you to quickly and easily work out challenging microwave engineering and high-frequency electromagnetic problems using the finite element method (FEM). Using clear, concise text and dozens of real-world application examples, the book provides a detailed description of FEM implementation, while the software provides the code and tools needed to solve the three major types of EM problems: guided propagation, scattering, and radiation. With this unique book and software set in hand, you can compute the dispersion diagram of arbitrarily shaped inhomogeneous isotropic lossless or lossy guiding structures, analyze E- and H-plane waveguide discontinuities and devices, and understand the reflection from and transmission through simple 2D and 3D inhomogeneous periodic structures. CD-ROM Included! Easy-to-use finite element software contains ready-made MATLAB and FORTRAN source code that you can use immediately to solve a wide range of microwave and EM problems. The package is fully compatible with Internet "freeware, " so you can perform advanced engineering functions without having to purchase expensive pre- and post-processing tools.


Multigrid Finite Element Methods for Electromagnetic Field Modeling

Multigrid Finite Element Methods for Electromagnetic Field Modeling
Author: Yu Zhu
Publisher: John Wiley & Sons
Total Pages: 453
Release: 2006-02-03
Genre: Science
ISBN: 0471741108

Download Multigrid Finite Element Methods for Electromagnetic Field Modeling Book in PDF, ePub and Kindle

This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods. Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers. Among the highlights of coverage are: * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems * Broadband, robust numerical modeling of passive microwave components and circuits * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems * Finite element modeling of electromagnetic waves in periodic structures The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness. This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.


Electromagnetic Shielding

Electromagnetic Shielding
Author: Salvatore Celozzi
Publisher: John Wiley & Sons
Total Pages: 564
Release: 2022-12-28
Genre: Technology & Engineering
ISBN: 1119736285

Download Electromagnetic Shielding Book in PDF, ePub and Kindle

Comprehensive Resource for Understanding Electromagnetic Shielding Concepts and Recent Developments in the Field This book describes the fundamental, theoretical, and practical aspects to approach electromagnetic shielding with a problem-solving mind, either at a design stage or in the context of an issue-fixing analysis of an existing configuration. It examines the main shielding mechanisms and how to analyze any shielding configuration, taking into account all the involved aspects. A detailed discussion on the possible choices of parameters suitable to ascertain the performance of a given shielding structure is also presented by considering either a continuous wave EM field source or a transient one. To aid in reader comprehension, both a theoretical and a practical engineering point of view are presented with several examples and applications included at the end of main chapters. Sample topics discussed in the book include: Concepts in transient shielding including performance parameters and canonical configurations Time domain performance of shielding structures, thin shields, and overall performance of shielding enclosures (cavities) How to install adequate barriers around the most sensitive components/systems to reduce or eliminate interference Details on solving core fundamental issues for electronic and telecommunications systems via electromagnetic shielding For industrial researchers, telecommunications/electrical engineers, and academics studying the design of EM shielding structures, this book serves as an important resource for understanding both the logistics and practical applications of electromagnetic shielding. It also includes all recent developments in the field to help professionals stay ahead of the curve in their respective disciplines.


Finite Element and Finite Difference Methods in Electromagnetic Scattering

Finite Element and Finite Difference Methods in Electromagnetic Scattering
Author: M.A. Morgan
Publisher: Elsevier
Total Pages: 398
Release: 2013-10-22
Genre: Technology & Engineering
ISBN: 1483289532

Download Finite Element and Finite Difference Methods in Electromagnetic Scattering Book in PDF, ePub and Kindle

This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled scalar potentials, to the consideration of conforming boundary elements and leap-frog time-marching in transient field problems involving corners and wedges in two and three dimensions, the volume will provide an indispensable reference source for practitioners and students of computational electromagnetics.