Fragility Basis For California Highway Overpass Bridge Seismic Decision Making PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fragility Basis For California Highway Overpass Bridge Seismic Decision Making PDF full book. Access full book title Fragility Basis For California Highway Overpass Bridge Seismic Decision Making.

Performance-based Seismic Bridge Design

Performance-based Seismic Bridge Design
Author: M. Lee Marsh
Publisher: Transportation Research Board
Total Pages: 138
Release: 2013
Genre: Technology & Engineering
ISBN: 0309223806

Download Performance-based Seismic Bridge Design Book in PDF, ePub and Kindle

"TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 440, Performance-Based Seismic Bridge Design (PBSD) summarizes the current state of knowledge and practice for PBSD. PBSD is the process that links decision making for facility design with seismic input, facility response, and potential facility damage. The goal of PBSD is to provide decision makers and stakeholders with data that will enable them to allocate resources for construction based on levels of desired seismic performance"--Publisher's description.


Next Generation Seismic Fragility Curves for California Bridges Incorporating the Evolution in Seismic Design Philosophy

Next Generation Seismic Fragility Curves for California Bridges Incorporating the Evolution in Seismic Design Philosophy
Author: Karthik Narayan Ramanathan
Publisher:
Total Pages:
Release: 2012
Genre: Bridges
ISBN:

Download Next Generation Seismic Fragility Curves for California Bridges Incorporating the Evolution in Seismic Design Philosophy Book in PDF, ePub and Kindle

Quantitative and qualitative assessment of the seismic risk to highway bridges is crucial in pre-earthquake planning, and post-earthquake response of transportation systems. Such assessments provide valuable knowledge about a number of principal effects of earthquakes such as traffic disruption of the overall highway system, impact on the regions' economy and post-earthquake response and recovery, and more recently serve as measures to quantify resilience. Unlike previous work, this study captures unique bridge design attributes specific to California bridge classes along with their evolution over three significant design eras, separated by the historic 1971 San Fernando and 1989 Loma Prieta earthquakes (these events affected changes in bridge seismic design philosophy). This research developed next-generation fragility curves for four multispan concrete bridge classes by synthesizing new knowledge and emerging modeling capabilities, and by closely coordinating new and ongoing national research initiatives with expertise from bridge designers. A multi-phase framework was developed for generating fragility curves, which provides decision makers with essential tools for emergency response, design, planning, policy support, and maximizing investments in bridge retrofit. This framework encompasses generational changes in bridge design and construction details. Parameterized high-fidelity three-dimensional nonlinear analytical models are developed for the portfolios of bridge classes within different design eras. These models incorporate a wide range of geometric and material uncertainties, and their responses are characterized under seismic loadings. Fragility curves were then developed considering the vulnerability of multiple components and thereby help to quantify the performance of highway bridge networks and to study the impact of seismic design principles on the performance within a bridge class. This not only leads to the development of fragility relations that are unique and better suited for bridges in California, but also leads to the creation of better bridge classes and sub-bins that have more consistent performance characteristics than those currently provided by the National Bridge Inventory. Another important feature of this research is associated with the development of damage state definitions and grouping of bridge components in a way that they have similar consequences in terms of repair and traffic implications following a seismic event. These definitions are in alignment with the California Department of Transportation's design and operational experience, thereby enabling better performance assessment, emergency response, and management in the aftermath of a seismic event. The fragility curves developed as a part of this research will be employed in ShakeCast, a web-based post-earthquake situational awareness application that automatically retrieves earthquake shaking data and generates potential damage assessment notifications for emergency managers and responders.


Bridge Safety, Maintenance, Management, Life-Cycle, Resilience and Sustainability

Bridge Safety, Maintenance, Management, Life-Cycle, Resilience and Sustainability
Author: Joan Ramon Casas
Publisher: CRC Press
Total Pages: 2646
Release: 2022-06-27
Genre: Technology & Engineering
ISBN: 1000798739

Download Bridge Safety, Maintenance, Management, Life-Cycle, Resilience and Sustainability Book in PDF, ePub and Kindle

Bridge Safety, Maintenance, Management, Life-Cycle, Resilience and Sustainability contains lectures and papers presented at the Eleventh International Conference on Bridge Maintenance, Safety and Management (IABMAS 2022, Barcelona, Spain, 11–15 July, 2022). This e-book contains the full papers of 322 contributions presented at IABMAS 2022, including the T.Y. Lin Lecture, 4 Keynote Lectures, and 317 technical papers from 36 countries all around the world. The contributions deal with the state-of-the-art as well as emerging concepts and innovative applications related to the main aspects of safety, maintenance, management, life-cycle, resilience, sustainability and technological innovations of bridges. Major topics include: advanced bridge design, construction and maintenance approaches, safety, reliability and risk evaluation, life-cycle management, life-cycle, resilience, sustainability, standardization, analytical models, bridge management systems, service life prediction, structural health monitoring, non-destructive testing and field testing, robustness and redundancy, durability enhancement, repair and rehabilitation, fatigue and corrosion, extreme loads, needs of bridge owners, whole life costing and investment for the future, financial planning and application of information and computer technology, big data analysis and artificial intelligence for bridges, among others. This volume provides both an up-to-date overview of the field of bridge engineering and significant contributions to the process of making more rational decisions on bridge safety, maintenance, management, life-cycle, resilience and sustainability of bridges for the purpose of enhancing the welfare of society. The volume serves as a valuable reference to all concerned with and/or involved in bridge structure and infrastructure systems, including students, researchers and practitioners from all areas of bridge engineering.


Application of Bridge Specific Fragility Analysis in the Seismic Design Process of Bridges in California

Application of Bridge Specific Fragility Analysis in the Seismic Design Process of Bridges in California
Author: Jazalyn Denise Dukes
Publisher:
Total Pages:
Release: 2013
Genre: Bridges
ISBN:

Download Application of Bridge Specific Fragility Analysis in the Seismic Design Process of Bridges in California Book in PDF, ePub and Kindle

The California Department of Transportation (Caltrans) seismic bridge design process for an Ordinary Bridge described in the Seismic Design Criteria (SDC) directs the design engineer to meet minimum requirements resulting in the design of a bridge that should remain standing in the event of a Design Seismic Hazard. A bridge can be designed to sustain significant damage; however it should avoid the collapse limit state, where the bridge is unable to resist loads due to self-weight. Seismic hazards, in the form of a design spectrum or ground motion time histories, are used to determine the demands of the bridge components and bridge system. These demands are compared to the capacity of the components to ensure that the bridge meets key performance criteria. The SDC also specifies design detailing of various components, including abutments, foundations, hinge seats and bent caps. The expectation of following the guidelines set forth by the SDC during the design process is that the resulting bridge design will avoid collapse under anticipated seismic loads. While the code provisions provide different analyses to follow and component detailing to adhere to in order to ensure a proper bridge design, the SDC does not provide a way to quantitatively determine whether the bridge design has met the requirement of no-collapse. The objectives of this research are to introduce probabilistic fragility analysis into the Caltrans design process and address the gap of information in the current design process, namely the determination of whether the bridge design meets the performance criteria of no-collapse at the design hazard level. The motivation for this project is to improve the designer's understanding of the probabilistic performance of their bridge design as a function of important design details. To accomplish these goals, a new bridge fragility method is presented as well as a design support tool that provides design engineers with instant access to fragility information during the design process. These products were developed for one specific bridge type that is common in California, the two-span concrete box girder bridge. The end product, the design support tool, is a bridge-specific fragility generator that provides probabilistic performance information on the bridge design. With this tool, a designer can check the bridge design, after going through the SDC design process, to determine the performance of the bridge and its components at any hazard level. The design support tool can provide the user with the probability of failure or collapse for the specific bridge design, which will give insight to the user about whether the bridge design has achieved the performance objective set out in the SDC. The designer would also be able to determine the effect of a change in various design details on the performance and therefore make more informed design decisions.


Advances in Structural Mechanics and Applications

Advances in Structural Mechanics and Applications
Author: José António Fonseca de Oliveira Correia
Publisher: Springer Nature
Total Pages: 438
Release: 2022-06-02
Genre: Technology & Engineering
ISBN: 3031047931

Download Advances in Structural Mechanics and Applications Book in PDF, ePub and Kindle

The proceedings of the conference is going to benefit the researchers, academicians, students and professionals in getting enlightened on latest technologies on structural mechanics, structure and infrastructure engineering. Further, work on practical applications of developed scientific methodologies to civil structural engineering will make the proceedings more interesting and useful to practicing engineers and structural designers.