Fractals And Spectra PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fractals And Spectra PDF full book. Access full book title Fractals And Spectra.

Fractals and Spectra

Fractals and Spectra
Author: Hans Triebel
Publisher: Springer Science & Business Media
Total Pages: 279
Release: 2010-10-17
Genre: Mathematics
ISBN: 3034800347

Download Fractals and Spectra Book in PDF, ePub and Kindle

This book deals with the symbiotic relationship between the theory of function spaces, fractal geometry, and spectral theory of (fractal) pseudodifferential operators as it has emerged quite recently. Most of the presented material is published here for the first time.


Fractals and Spectra

Fractals and Spectra
Author: Hans Triebel
Publisher: Springer Science & Business Media
Total Pages: 278
Release: 2010-10-28
Genre: Mathematics
ISBN: 3034800339

Download Fractals and Spectra Book in PDF, ePub and Kindle

This book deals with the symbiotic relationship between the theory of function spaces, fractal geometry, and spectral theory of (fractal) pseudodifferential operators as it has emerged quite recently. Most of the presented material is published here for the first time.


Fractal Geometry, Complex Dimensions and Zeta Functions

Fractal Geometry, Complex Dimensions and Zeta Functions
Author: Michel L. Lapidus
Publisher: Springer Science & Business Media
Total Pages: 583
Release: 2012-09-20
Genre: Mathematics
ISBN: 1461421764

Download Fractal Geometry, Complex Dimensions and Zeta Functions Book in PDF, ePub and Kindle

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.


Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality

Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality
Author: Hafedh Herichi
Publisher: World Scientific
Total Pages: 494
Release: 2021-07-27
Genre: Mathematics
ISBN: 9813230819

Download Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality Book in PDF, ePub and Kindle

Studying the relationship between the geometry, arithmetic and spectra of fractals has been a subject of significant interest in contemporary mathematics. This book contributes to the literature on the subject in several different and new ways. In particular, the authors provide a rigorous and detailed study of the spectral operator, a map that sends the geometry of fractal strings onto their spectrum. To that effect, they use and develop methods from fractal geometry, functional analysis, complex analysis, operator theory, partial differential equations, analytic number theory and mathematical physics.Originally, M L Lapidus and M van Frankenhuijsen 'heuristically' introduced the spectral operator in their development of the theory of fractal strings and their complex dimensions, specifically in their reinterpretation of the earlier work of M L Lapidus and H Maier on inverse spectral problems for fractal strings and the Riemann hypothesis.One of the main themes of the book is to provide a rigorous framework within which the corresponding question 'Can one hear the shape of a fractal string?' or, equivalently, 'Can one obtain information about the geometry of a fractal string, given its spectrum?' can be further reformulated in terms of the invertibility or the quasi-invertibility of the spectral operator.The infinitesimal shift of the real line is first precisely defined as a differentiation operator on a family of suitably weighted Hilbert spaces of functions on the real line and indexed by a dimensional parameter c. Then, the spectral operator is defined via the functional calculus as a function of the infinitesimal shift. In this manner, it is viewed as a natural 'quantum' analog of the Riemann zeta function. More precisely, within this framework, the spectral operator is defined as the composite map of the Riemann zeta function with the infinitesimal shift, viewed as an unbounded normal operator acting on the above Hilbert space.It is shown that the quasi-invertibility of the spectral operator is intimately connected to the existence of critical zeros of the Riemann zeta function, leading to a new spectral and operator-theoretic reformulation of the Riemann hypothesis. Accordingly, the spectral operator is quasi-invertible for all values of the dimensional parameter c in the critical interval (0,1) (other than in the midfractal case when c =1/2) if and only if the Riemann hypothesis (RH) is true. A related, but seemingly quite different, reformulation of RH, due to the second author and referred to as an 'asymmetric criterion for RH', is also discussed in some detail: namely, the spectral operator is invertible for all values of c in the left-critical interval (0,1/2) if and only if RH is true.These spectral reformulations of RH also led to the discovery of several 'mathematical phase transitions' in this context, for the shape of the spectrum, the invertibility, the boundedness or the unboundedness of the spectral operator, and occurring either in the midfractal case or in the most fractal case when the underlying fractal dimension is equal to ½ or 1, respectively. In particular, the midfractal dimension c=1/2 is playing the role of a critical parameter in quantum statistical physics and the theory of phase transitions and critical phenomena.Furthermore, the authors provide a 'quantum analog' of Voronin's classical theorem about the universality of the Riemann zeta function. Moreover, they obtain and study quantized counterparts of the Dirichlet series and of the Euler product for the Riemann zeta function, which are shown to converge (in a suitable sense) even inside the critical strip.For pedagogical reasons, most of the book is devoted to the study of the quantized Riemann zeta function. However, the results obtained in this monograph are expected to lead to a quantization of most classic arithmetic zeta functions, hence, further 'naturally quantizing' various aspects of analytic number theory and arithmetic geometry.The book should be accessible to experts and non-experts alike, including mathematics and physics graduate students and postdoctoral researchers, interested in fractal geometry, number theory, operator theory and functional analysis, differential equations, complex analysis, spectral theory, as well as mathematical and theoretical physics. Whenever necessary, suitable background about the different subjects involved is provided and the new work is placed in its proper historical context. Several appendices supplementing the main text are also included.


Fractal Geometry, Complex Dimensions and Zeta Functions

Fractal Geometry, Complex Dimensions and Zeta Functions
Author: Michel L. Lapidus
Publisher: Springer Science & Business Media
Total Pages: 472
Release: 2007-08-08
Genre: Mathematics
ISBN: 0387352082

Download Fractal Geometry, Complex Dimensions and Zeta Functions Book in PDF, ePub and Kindle

Number theory, spectral geometry, and fractal geometry are interlinked in this study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. The Riemann hypothesis is given a natural geometric reformulation in context of vibrating fractal strings, and the book offers explicit formulas extended to apply to the geometric, spectral and dynamic zeta functions associated with a fractal.


Fractals in Geophysics

Fractals in Geophysics
Author: SCHOLZ
Publisher: Birkhäuser
Total Pages: 312
Release: 2013-11-22
Genre: Science
ISBN: 3034863896

Download Fractals in Geophysics Book in PDF, ePub and Kindle

Reprint from Pure and Applied Geophysics (PAGEOPH), Volume 131 (1989), No. 1


Fractal Patterns in Nonlinear Dynamics and Applications

Fractal Patterns in Nonlinear Dynamics and Applications
Author: Santo Banerjee
Publisher: CRC Press
Total Pages: 142
Release: 2020-03-27
Genre: Mathematics
ISBN: 1351647628

Download Fractal Patterns in Nonlinear Dynamics and Applications Book in PDF, ePub and Kindle

Most books on fractals focus on deterministic fractals as the impact of incorporating randomness and time is almost absent. Further, most review fractals without explaining what scaling and self-similarity means. This book introduces the idea of scaling, self-similarity, scale-invariance and their role in the dimensional analysis. For the first time, fractals emphasizing mostly on stochastic fractal, and multifractals which evolves with time instead of scale-free self-similarity, are discussed. Moreover, it looks at power laws and dynamic scaling laws in some detail and provides an overview of modern statistical tools for calculating fractal dimension and multifractal spectrum.


Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality

Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality
Author: Hafedh Herichi
Publisher: World Scientific
Total Pages: 494
Release: 2021-07-27
Genre: Mathematics
ISBN: 9813230819

Download Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality Book in PDF, ePub and Kindle

Studying the relationship between the geometry, arithmetic and spectra of fractals has been a subject of significant interest in contemporary mathematics. This book contributes to the literature on the subject in several different and new ways. In particular, the authors provide a rigorous and detailed study of the spectral operator, a map that sends the geometry of fractal strings onto their spectrum. To that effect, they use and develop methods from fractal geometry, functional analysis, complex analysis, operator theory, partial differential equations, analytic number theory and mathematical physics.Originally, M L Lapidus and M van Frankenhuijsen 'heuristically' introduced the spectral operator in their development of the theory of fractal strings and their complex dimensions, specifically in their reinterpretation of the earlier work of M L Lapidus and H Maier on inverse spectral problems for fractal strings and the Riemann hypothesis.One of the main themes of the book is to provide a rigorous framework within which the corresponding question 'Can one hear the shape of a fractal string?' or, equivalently, 'Can one obtain information about the geometry of a fractal string, given its spectrum?' can be further reformulated in terms of the invertibility or the quasi-invertibility of the spectral operator.The infinitesimal shift of the real line is first precisely defined as a differentiation operator on a family of suitably weighted Hilbert spaces of functions on the real line and indexed by a dimensional parameter c. Then, the spectral operator is defined via the functional calculus as a function of the infinitesimal shift. In this manner, it is viewed as a natural 'quantum' analog of the Riemann zeta function. More precisely, within this framework, the spectral operator is defined as the composite map of the Riemann zeta function with the infinitesimal shift, viewed as an unbounded normal operator acting on the above Hilbert space.It is shown that the quasi-invertibility of the spectral operator is intimately connected to the existence of critical zeros of the Riemann zeta function, leading to a new spectral and operator-theoretic reformulation of the Riemann hypothesis. Accordingly, the spectral operator is quasi-invertible for all values of the dimensional parameter c in the critical interval (0,1) (other than in the midfractal case when c =1/2) if and only if the Riemann hypothesis (RH) is true. A related, but seemingly quite different, reformulation of RH, due to the second author and referred to as an 'asymmetric criterion for RH', is also discussed in some detail: namely, the spectral operator is invertible for all values of c in the left-critical interval (0,1/2) if and only if RH is true.These spectral reformulations of RH also led to the discovery of several 'mathematical phase transitions' in this context, for the shape of the spectrum, the invertibility, the boundedness or the unboundedness of the spectral operator, and occurring either in the midfractal case or in the most fractal case when the underlying fractal dimension is equal to ½ or 1, respectively. In particular, the midfractal dimension c=1/2 is playing the role of a critical parameter in quantum statistical physics and the theory of phase transitions and critical phenomena.Furthermore, the authors provide a 'quantum analog' of Voronin's classical theorem about the universality of the Riemann zeta function. Moreover, they obtain and study quantized counterparts of the Dirichlet series and of the Euler product for the Riemann zeta function, which are shown to converge (in a suitable sense) even inside the critical strip.For pedagogical reasons, most of the book is devoted to the study of the quantized Riemann zeta function. However, the results obtained in this monograph are expected to lead to a quantization of most classic arithmetic zeta functions, hence, further 'naturally quantizing' various aspects of analytic number theory and arithmetic geometry.The book should be accessible to experts and non-experts alike, including mathematics and physics graduate students and postdoctoral researchers, interested in fractal geometry, number theory, operator theory and functional analysis, differential equations, complex analysis, spectral theory, as well as mathematical and theoretical physics. Whenever necessary, suitable background about the different subjects involved is provided and the new work is placed in its proper historical context. Several appendices supplementing the main text are also included.


Fractals and Chaos

Fractals and Chaos
Author: Paul S. Addison
Publisher: CRC Press
Total Pages: 276
Release: 1997-01-01
Genre: Science
ISBN: 9780849384431

Download Fractals and Chaos Book in PDF, ePub and Kindle

Fractals and Chaos: An Illustrated Course provides you with a practical, elementary introduction to fractal geometry and chaotic dynamics-subjects that have attracted immense interest throughout the scientific and engineering disciplines. The book may be used in part or as a whole to form an introductory course in either or both subject areas. A prominent feature of the book is the use of many illustrations to convey the concepts required for comprehension of the subject. In addition, plenty of problems are provided to test understanding. Advanced mathematics is avoided in order to provide a concise treatment and speed the reader through the subject areas. The book can be used as a text for undergraduate courses or for self-study.


Fractal Geometry and Number Theory

Fractal Geometry and Number Theory
Author: Michel L. Lapidus
Publisher: Springer Science & Business Media
Total Pages: 277
Release: 2013-12-01
Genre: Mathematics
ISBN: 1461253144

Download Fractal Geometry and Number Theory Book in PDF, ePub and Kindle

A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap pendix B.) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which form a sequence which we assume to be infinite. Important information about the geometry of . c is contained in its geometric zeta function (c(8) = L lj. j=l 2 Introduction We assume throughout that this function has a suitable meromorphic ex tension. The central notion of this book, the complex dimensions of a fractal string . c, is defined as the poles of the meromorphic extension of (c.