Folding And Self Assembly Of Biological Macromolecules PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Folding And Self Assembly Of Biological Macromolecules PDF full book. Access full book title Folding And Self Assembly Of Biological Macromolecules.

Folding and Self-assembly of Biological Macromolecules

Folding and Self-assembly of Biological Macromolecules
Author: Eric Westhof
Publisher: World Scientific
Total Pages: 417
Release: 2004
Genre: Science
ISBN: 9812385002

Download Folding and Self-assembly of Biological Macromolecules Book in PDF, ePub and Kindle

This proceedings volume explores the pathways and mechanisms by which constituent residues interact and fold to yield native biological macromolecules (catalytic RNA and functional proteins), how ribosomes and other macromolecular complexes self-assemble, and relevant energetics considerations. At the week-long interactive conference, some 20 leading researchers reported their most pertinent results, confronting each other and an audience of more than 150 specialists from a wide range of scientific disciplines, including structural and molecular biology, biophysics, computer science, mathematics, and theoretical physics. The fourteen papers - and audience interaction - are edited and illustrated versions of the transcribed oral presentations.


Folding and Self-assembly of Biological Macromolecules

Folding and Self-assembly of Biological Macromolecules
Author: Noah Hardy
Publisher: World Scientific
Total Pages: 424
Release: 2004
Genre: Mathematics
ISBN: 9789812703057

Download Folding and Self-assembly of Biological Macromolecules Book in PDF, ePub and Kindle

Organized by Alessandra Carbone ( IHeS, Bures-sur-Yvette, France ) Organized by Misha Gromov ( IHeS, Bures-sur-Yvette, France ) Organized by Fran ois K(r)p s ( CNRS-Genopole-, evry, France ) Organized by Eric Westhof ( Universit(r) Louis-Pasteur, Strasbourg, France ). This proceedings volume explores the pathways and mechanisms by which constituent residues interact and fold to yield native biological macromolecules (catalytic RNA and functional proteins), how ribosomes and other macromolecular complexes self-assemble, and relevant energetics considerations. At the week-long interactive conference, some 20 leading researchers reported their most pertinent results, confronting each other and an audience of more than 150 specialists from a wide range of scientific disciplines, including structural and molecular biology, biophysics, computer science, mathematics, and theoretical physics. The fourteen papers OCo and audience interaction OCo are edited and illustrated versions of the transcribed oral presentations. The proceedings have been selected for coverage in: . OCo Biochemistry & Biophysics Citation Index(tm). OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). OCo CC Proceedings OCo Biomedical, Biological & Agricultural Sciences. Contents: Evolution-Based Genome Analysis: An Alternative to Analyze Folding and Function in Proteins (S Benner); Conformation of Charged Polymers: Polyelectrolytes and Polyampholytes (J-F Joanny); Statistically Derived Rules for RNA Folding (M Zuker); Experimental Approaches to RNA Folding (S Woodson); Some Questions Concerning RNA Folding (F Michel); RNA Folding in Ribosome Assembly (J R Williamson); From RNA Sequences to Folding Pathways and Structures: A Perspective (H Isamber t); An Evolutionary Perspective on the Determinants of Protein Function and Assembly (O Lichtarg e); Some Residues are more Equal than Others: Application to Protein Classification and Structure Prediction (A Kister & I Gelfan d); Structure-Function Relationships in Polymerases (M Delarue); The Protein-Folding Nucleus: From Simple Models to Real Proteins (L Mirn y); Chaperonin-Mediated Protein Folding (D Thirumalai); Virus Assembly and Maturation (J E Johnson); The Animal in the Machine: Is There a Geometric Program in the Genetic Program? (A Danchin). Readership: Researchers, academics and graduate students in structural biology, cellular and molecular biology, biophysics, biochemistry and biomathematics/bioinformatics."


Protein Self-Assembly

Protein Self-Assembly
Author: Jennifer J. McManus
Publisher: Humana
Total Pages: 266
Release: 2020-08-08
Genre: Science
ISBN: 9781493996803

Download Protein Self-Assembly Book in PDF, ePub and Kindle

This volume explores experimental and computational approaches to measuring the most widely studied protein assemblies, including condensed liquid phases, aggregates, and crystals. The chapters in this book are organized into three parts: Part One looks at the techniques used to measure protein-protein interactions and equilibrium protein phases in dilute and concentrated protein solutions; Part Two describes methods to measure kinetics of aggregation and to characterize the assembled state; and Part Three details several different computational approaches that are currently used to help researchers understand protein self-assembly. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Protein Self-Assembly: Methods and Protocols is a valuable resource for researchers who are interested in learning more about this developing field.


Energy Landscape Exploration of the Folding Processes of Biological Molecules

Energy Landscape Exploration of the Folding Processes of Biological Molecules
Author: Megan Clare Engel
Publisher:
Total Pages: 82
Release: 2013
Genre: Biomolecules
ISBN:

Download Energy Landscape Exploration of the Folding Processes of Biological Molecules Book in PDF, ePub and Kindle

For decades, scientists from every discipline have struggled to understand the mechanism of biological self-assembly, which allows proteins and nucleic acids to fold reliably into functional three-dimensional structures. Such an understanding may hold the key to eliminating diseases such as Alzheimer's and Parkinson's and to effective protein engineering. The current best framework for describing biological folding processes is that of statistical mechanical energy landscape theory, and one of the most promising experimental techniques for exploring molecular energy landscapes is single molecule force spectroscopy (SMFS), in which molecules are mechanically denatured. Theoretical advances have enabled the extraction of complete energy landscape profiles from SMFS data. Here, SMFS experiments performed using laser optical tweezers are analyzed to yield the first ever full landscape profile for an RNA pseudoknot. Further, a promising novel landscape reconstruction technique is validated for the first time using experimental data from a DNA hairpin.


Molecular Biology of The Cell

Molecular Biology of The Cell
Author: Bruce Alberts
Publisher:
Total Pages: 0
Release: 2002
Genre: Cytology
ISBN: 9780815332183

Download Molecular Biology of The Cell Book in PDF, ePub and Kindle


Biomolecular Self-Assembling Materials

Biomolecular Self-Assembling Materials
Author: National Research Council
Publisher: National Academies Press
Total Pages: 43
Release: 1996-11-29
Genre: Technology & Engineering
ISBN: 0309056284

Download Biomolecular Self-Assembling Materials Book in PDF, ePub and Kindle


Self-Assembly of Polymers

Self-Assembly of Polymers
Author: Dmitry Volodkin
Publisher: MDPI
Total Pages: 186
Release: 2020-04-22
Genre: Technology & Engineering
ISBN: 3039285068

Download Self-Assembly of Polymers Book in PDF, ePub and Kindle

Nowadays, polymer self-assembly has become extremely attractive for both biological (drug delivery, tissue engineering, scaffolds) and non-biological (packaging, semiconductors) applications. In nature, a number of key biological processes are driven by polymer self-assembly, for instance protein folding. Impressive morphologies can be assembled from polymers thanks to a diverse range of interactions involved, e.g., electrostatics, hydrophobic, hots-guest interactions, etc. Both 2D and 3D tailor-made assemblies can be designed through modern powerful techniques and approaches such as the layer-by-layer and the Langmuir-Blodgett deposition, hard and soft templating. This Special Issue highlights contributions (research papers, short communications, review articles) that focus on recent developments in polymer self-assembly for both fundamental understanding the assembly phenomenon and real applications.


Self-Assembly Monolayer Structures of Lipids and Macromolecules at Interfaces

Self-Assembly Monolayer Structures of Lipids and Macromolecules at Interfaces
Author: K.S. Birdi
Publisher: Springer Science & Business Media
Total Pages: 391
Release: 2007-05-08
Genre: Science
ISBN: 0306468131

Download Self-Assembly Monolayer Structures of Lipids and Macromolecules at Interfaces Book in PDF, ePub and Kindle

Self-assembly monolayer (SAM) structures of lipids and macromolecules have been found to play an important role in many industrial and biological phenomena. This book describes two procedures, namely the STM and AFM, that are used to study SAMs at solid surfaces. K.S. Birdi examines the SAMs at both liquid and solid surfaces by using the Langmuir monolayer method. This book is intended for researchers, academics and professionals.


Macromolecular Self-Assembly

Macromolecular Self-Assembly
Author: Laurent Billon
Publisher: John Wiley & Sons
Total Pages: 290
Release: 2016-09-06
Genre: Technology & Engineering
ISBN: 1118887123

Download Macromolecular Self-Assembly Book in PDF, ePub and Kindle

This book describes techniques of synthesis and self-assembly of macromolecules for developing new materials and improving functionality of existing ones. Because self-assembly emulates how nature creates complex systems, they likely have the best chance at succeeding in real-world biomedical applications. • Employs synthetic chemistry, physical chemistry, and materials science principles and techniques • Emphasizes self-assembly in solutions (particularly, aqueous solutions) and at solid-liquid interfaces • Describes polymer assembly driven by multitude interactions, including solvophobic, electrostatic, and obligatory co-assembly • Illustrates assembly of bio-hybrid macromolecules and applications in biomedical engineering


Self-assembling Biomaterials

Self-assembling Biomaterials
Author: Helena S. Azevedo
Publisher: Woodhead Publishing
Total Pages: 612
Release: 2018-04-17
Genre: Technology & Engineering
ISBN: 0081020120

Download Self-assembling Biomaterials Book in PDF, ePub and Kindle

Self-assembling biomaterials: molecular design, characterization and application in biology and medicine provides a comprehensive coverage on an emerging area of biomaterials science, spanning from conceptual designs to advanced characterization tools and applications of self-assembling biomaterials, and compiling the recent developments in the field. Molecular self-assembly, the autonomous organization of molecules, is ubiquitous in living organisms and intrinsic to biological structures and function. Not surprisingly, the exciting field of engineering artificial self-assembling biomaterials often finds inspiration in Biology. More important, materials that self-assemble speak the language of life and can be designed to seamlessly integrate with the biological environment, offering unique engineering opportunities in bionanotechnology. The book is divided in five parts, comprising design of molecular building blocks for self-assembly; exclusive features of self-assembling biomaterials; specific methods and techniques to predict, investigate and characterize self-assembly and formed assemblies; different approaches for controlling self-assembly across multiple length scales and the nano/micro/macroscopic properties of biomaterials; diverse range of applications in biomedicine, including drug delivery, theranostics, cell culture and tissue regeneration. Written by researchers working in self-assembling biomaterials, it addresses a specific need within the Biomaterials scientific community. Explores both theoretical and practical aspects of self-assembly in biomaterials Includes a dedicated section on characterization techniques, specific for self-assembling biomaterials Examines the use of dynamic self-assembling biomaterials