Focused Beam Methods PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Focused Beam Methods PDF full book. Access full book title Focused Beam Methods.

Focused Beam Methods

Focused Beam Methods
Author: John W. Schultz
Publisher: John Schultz
Total Pages: 141
Release: 2012-10-15
Genre: Technology & Engineering
ISBN: 1480092851

Download Focused Beam Methods Book in PDF, ePub and Kindle

Determining the intrinsic microwave properties of materials is important for a variety of applications ranging from antenna and electronic circuit design to remote sensing to electromagnetic interference mitigation. A number of methods exist for characterizing intrinsic properties of materials at microwave frequencies, including transmission lines, resonant cavities, and impedance analysis. The use of free-space measurement methods has become commonplace among microwave material characterization laboratories due to its ease of use and reasonable accuracy. While some free-space facilities exist that can characterize down to 500 MHz, the method is most useful for characterizing materials from 2 GHz through millimeter waves. This book is designed to acquaint engineers and scientists with the theory and practice of using microwave focused beam systems for free-space characterization of materials.


Focused Ion Beam Systems

Focused Ion Beam Systems
Author: Nan Yao
Publisher: Cambridge University Press
Total Pages: 496
Release: 2007-09-13
Genre: Technology & Engineering
ISBN: 1107320569

Download Focused Ion Beam Systems Book in PDF, ePub and Kindle

The focused ion beam (FIB) system is an important tool for understanding and manipulating the structure of materials at the nanoscale. Combining this system with an electron beam creates a DualBeam - a single system that can function as an imaging, analytical and sample modification tool. Presenting the principles, capabilities, challenges and applications of the FIB technique, this edited volume, first published in 2007, comprehensively covers the ion beam technology including the DualBeam. The basic principles of ion beam and two-beam systems, their interaction with materials, etching and deposition are all covered, as well as in situ materials characterization, sample preparation, three-dimensional reconstruction and applications in biomaterials and nanotechnology. With nanostructured materials becoming increasingly important in micromechanical, electronic and magnetic devices, this self-contained review of the range of ion beam methods, their advantages, and when best to implement them is a valuable resource for researchers in materials science, electrical engineering and nanotechnology.


Introduction to Focused Ion Beams

Introduction to Focused Ion Beams
Author: Lucille A. Giannuzzi
Publisher: Springer Science & Business Media
Total Pages: 380
Release: 2004-11-19
Genre: Science
ISBN: 9780387231167

Download Introduction to Focused Ion Beams Book in PDF, ePub and Kindle

Introduction to Focused Ion Beams is geared towards techniques and applications. This is the only text that discusses and presents the theory directly related to applications and the only one that discusses the vast applications and techniques used in FIBs and dual platform instruments.


Focused Ion Beam Source Method and Apparatus

Focused Ion Beam Source Method and Apparatus
Author:
Publisher:
Total Pages:
Release: 2001
Genre:
ISBN:

Download Focused Ion Beam Source Method and Apparatus Book in PDF, ePub and Kindle

A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.


Focus Like a Laser Beam

Focus Like a Laser Beam
Author: Lisa L. Haneberg
Publisher: John Wiley & Sons
Total Pages: 151
Release: 2010-12-03
Genre: Business & Economics
ISBN: 111804102X

Download Focus Like a Laser Beam Book in PDF, ePub and Kindle

In Focus Like a Laser Beam, acclaimed management consultant and business blogger Lisa Haneberg offers business leaders a new way to direct their focus that, like a laser beam, is direct, fast, and on track. The book offers leaders ways to improve energy and engagement in the workplace and redirect how people communicate at work. Focus Like a Laser Beam is filled with useful suggestions for dealing with distractions and diversions and outlines the ten practices that will help leaders focus on what’s most important. Know and feel the power of laser focus Get connected with your employees Have fun and be fun Relax to energize Turn meetings into focus sessions Invite a challenge Huddle Stop multitasking and put your focus where it belongs Do one great thing Let go of outdated goals, projects, and tasks


Focused Ion Beam Systems

Focused Ion Beam Systems
Author: Nan Yao
Publisher:
Total Pages: 395
Release: 2007
Genre: Focused ion beams
ISBN: 9781107316355

Download Focused Ion Beam Systems Book in PDF, ePub and Kindle

The focused ion beam (FIB) system is an important tool for understanding and manipulating the structure of materials at the nanoscale. Combining this system with an electron beam creates a DualBeam - a single system that can function as an imaging, analytical and sample modification tool. Presenting the principles, capabilities, challenges and applications of the FIB technique, this edited volume, first published in 2007, comprehensively covers the ion beam technology including the DualBeam. The basic principles of ion beam and two-beam systems, their interaction with materials, etching and deposition are all covered, as well as in situ materials characterization, sample preparation, three-dimensional reconstruction and applications in biomaterials and nanotechnology. With nanostructured materials becoming increasingly important in micromechanical, electronic and magnetic devices, this self-contained review of the range of ion beam methods, their advantages, and when best to implement them is a valuable resource for researchers in materials science, electrical engineering and nanotechnology.


Sharp Focusing of Laser Light

Sharp Focusing of Laser Light
Author: Victor V. Kotlyar
Publisher: CRC Press
Total Pages: 268
Release: 2019-10-28
Genre: Technology & Engineering
ISBN: 1000711633

Download Sharp Focusing of Laser Light Book in PDF, ePub and Kindle

Readers will learn in which ways light can be "confined" within a subwavelength region smaller than half a wavelength. Strictly within the focal spot, all degrees of freedom of light interact and manifest themselves in a dramatic way. The size and shape of the focal spot and the magnitude of side-lobes depend on the polarization state alongside phase and amplitude distributions of a light beam. Readers will learn techniques in which inhomogeneously (i.e., azimuthally and radially) polarized optical beams can be focused. In sharp focus, exotic phenomena can occur, including the negative propagation of light and a toroidal optical flow. Throughout the book, the numerical simulation is performed using the rigorous solution of Maxwell’s equations based on a Finite-Difference Time-Domain (FDTD) approach, which makes the results of modeling highly reliable. The photonic components, including optical metasurfaces, discussed in the book have been implemented using state-of-the-art techniques of electron beam writing and reactive ion-beam etching of microrelief. Two chapters are concerned with photonics hot spots, which deal with the control of light by means of optical metasurfaces and the generation of an energy backflow in the region of sharp focus of a laser beam. Another hot topic is diffractive polarization converters implemented as subwavelength diffraction gratings to convert polarization of light. By way of illustration, such converters are shown to perform linear-to-radial or linear-to-azimuthal polarization conversion. The book describes advanced photonic components fabricated by the authors to perform sharp focusing of light, including binary zone plates, binary axicons, a planar photonic crystal lens, diffraction polarization converters, and metalenses. This book is a must-have for individuals and institutions studying cutting edge optics.


Nanofabrication Using Focused Ion and Electron Beams

Nanofabrication Using Focused Ion and Electron Beams
Author: Ivo Utke
Publisher: Oxford University Press
Total Pages: 830
Release: 2012-03-05
Genre: Technology & Engineering
ISBN: 0199920990

Download Nanofabrication Using Focused Ion and Electron Beams Book in PDF, ePub and Kindle

Nanofabrication Using Focused Ion and Electron Beams presents fundamentals of the interaction of focused ion and electron beams (FIB/FEB) with surfaces, as well as numerous applications of these techniques for nanofabrication involving different materials and devices. The book begins by describing the historical evolution of FIB and FEB systems, applied first for micro- and more recently for nanofabrication and prototyping, practical solutions available in the market for different applications, and current trends in development of tools and their integration in a fast growing field of nanofabrication and nanocharacterization. Limitations of the FIB/FEB techniques, especially important when nanoscale resolution is considered, as well as possible ways to overcome the experimental difficulties in creating new nanodevices and improving resolution of processing, are outlined. Chapters include tutorials describing fundamental aspects of the interaction of beams (FIB/FEB) with surfaces, nanostructures and adsorbed molecules; electron and ion beam chemistries; basic theory, design and configuration of equipment; simulations of processes; basic solutions for nanoprototyping. Emerging technologies as processing by cluster beams are also discussed. In addition, the book considers numerous applications of these techniques (milling, etching, deposition) for nanolithography, nanofabrication and characterization, involving different nanostructured materials and devices. Its main focus is on practical details of using focused ion and electron beams with gas assistance (deposition and etching) and without gas assistance (milling/cutting) for fabrication of devices from the fields of nanoelectronics, nanophotonics, nanomagnetics, functionalized scanning probe tips, nanosensors and other types of NEMS (nanoelectromechanical systems). Special attention is given to strategies designed to overcome limitations of the techniques (e.g., due to damaging produced by energetic ions interacting with matter), particularly those involving multi-step processes and multi-layer materials. Through its thorough demonstration of fundamental concepts and its presentation of a wide range of technologies developed for specific applications, this volume is ideal for researches from many different disciplines, as well as engineers and professors in nanotechnology and nanoscience.