Fluctuations And Non Equilibrium Phenomena In Strongly Correlated Ultracold Atoms PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fluctuations And Non Equilibrium Phenomena In Strongly Correlated Ultracold Atoms PDF full book. Access full book title Fluctuations And Non Equilibrium Phenomena In Strongly Correlated Ultracold Atoms.

Fluctuations and Non-Equilibrium Phenomena in Strongly-Correlated Ultracold Atoms

Fluctuations and Non-Equilibrium Phenomena in Strongly-Correlated Ultracold Atoms
Author: Kazuma Nagao
Publisher: Springer Nature
Total Pages: 126
Release: 2020-08-25
Genre: Science
ISBN: 9811571716

Download Fluctuations and Non-Equilibrium Phenomena in Strongly-Correlated Ultracold Atoms Book in PDF, ePub and Kindle

This book discusses non-equilibrium quantum many-body dynamics, recently explored in an analog quantum simulator of strongly correlated ultracold atoms. The first part presents a field-theoretical analysis of the experimental observability of the Higgs amplitude mode that emerges as a relativistic collective excitation near a quantum phase transition of superfluid Bose gases in an optical lattice potential. The author presents the dynamical susceptibilities to external driving of the microscopic parameters, taking into account a leading-order perturbative correction from quantum and thermal fluctuations and shows clear signatures of the Higgs mode in these observables. This is the first result that strongly supports the stability of the Higgs mode in three-dimensional optical lattices even in the presence of a spatially inhomogeneous confinement potential and paves the way for desktop observations of the Higgs mode. In the second part, the author applies the semi-classical truncated-Wigner approximation (TWA) to far-from-equilibrium quantum dynamics. Specifically, he considers the recent experiments on quantum-quench dynamics in a Bose-Hubbard quantum simulator. A direct comparison shows remarkable agreement between the numerical results from TWA and the experimental data. This result clearly indicates the potential of such a semi-classical approach in reliably simulating many-body systems using classical computers. The book also includes several chapters providing comprehensive reviews of the recent studies on cold-atomic quantum simulation and various theoretical methods, including the Schwinger-boson approach in strongly correlated systems and the phase-space semi-classical method for far-from-equilibrium quantum dynamics. These chapters are highly recommended to students and young researchers who are interested in semi-classical approaches in non-equilibrium quantum dynamics.


Non-equilibrium Dynamics of One-Dimensional Bose Gases

Non-equilibrium Dynamics of One-Dimensional Bose Gases
Author: Tim Langen
Publisher: Springer
Total Pages: 154
Release: 2015-05-22
Genre: Science
ISBN: 3319185640

Download Non-equilibrium Dynamics of One-Dimensional Bose Gases Book in PDF, ePub and Kindle

This work presents a series of experiments with ultracold one-dimensional Bose gases, which establish said gases as an ideal model system for exploring a wide range of non-equilibrium phenomena. With the help of newly developed tools, like full distributions functions and phase correlation functions, the book reveals the emergence of thermal-like transient states, the light-cone-like emergence of thermal correlations and the observation of generalized thermodynamic ensembles. This points to a natural emergence of classical statistical properties from the microscopic unitary quantum evolution, and lays the groundwork for a universal framework of non-equilibrium physics. The thesis investigates a central question that is highly contested in quantum physics: how and to which extent does an isolated quantum many-body system relax? This question arises in many diverse areas of physics, and many of the open problems appear at vastly different energy, time and length scales, ranging from high-energy physics and cosmology to condensed matter and quantum information. A key challenge in attempting to answer this question is the scarcity of quantum many-body systems that are both well isolated from the environment and accessible for experimental study.


Quantum Information and Coherence

Quantum Information and Coherence
Author: Erika Andersson
Publisher: Springer
Total Pages: 290
Release: 2014-07-08
Genre: Computers
ISBN: 3319040634

Download Quantum Information and Coherence Book in PDF, ePub and Kindle

This book offers an introduction to ten key topics in quantum information science and quantum coherent phenomena, aimed at graduate-student level. The chapters cover some of the most recent developments in this dynamic research field where theoretical and experimental physics, combined with computer science, provide a fascinating arena for groundbreaking new concepts in information processing. The book addresses both the theoretical and experimental aspects of the subject, and clearly demonstrates how progress in experimental techniques has stimulated a great deal of theoretical effort and vice versa. Experiments are shifting from simply preparing and measuring quantum states to controlling and manipulating them, and the book outlines how the first real applications, notably quantum key distribution for secure communication, are starting to emerge. The chapters cover quantum retrodiction, ultracold quantum gases in optical lattices, optomechanics, quantum algorithms, quantum key distribution, quantum control based on measurement, orbital angular momentum of light, entanglement theory, trapped ions and quantum metrology, and open quantum systems subject to decoherence. The contributing authors have been chosen not just on the basis of their scientific expertise, but also because of their ability to offer pedagogical and well-written contributions which will be of interest to students and established researchers.


Many-Body Physics with Ultracold Gases

Many-Body Physics with Ultracold Gases
Author: Christophe Salomon
Publisher: Oxford University Press (UK)
Total Pages: 374
Release: 2013
Genre: Science
ISBN: 019966188X

Download Many-Body Physics with Ultracold Gases Book in PDF, ePub and Kindle

This book provides authoritative tutorials on the most recent achievements in the field of quantum gases at the interface between atomic physics and quantum optics, condensed matter physics, nuclear and high-energy physics, non-linear physics, and quantum information.


Manipulating Quantum Systems

Manipulating Quantum Systems
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 315
Release: 2020-10-14
Genre: Science
ISBN: 0309499518

Download Manipulating Quantum Systems Book in PDF, ePub and Kindle

The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.


Quantum Gases

Quantum Gases
Author: Nick Proukakis
Publisher: World Scientific
Total Pages: 579
Release: 2013
Genre: Science
ISBN: 1848168128

Download Quantum Gases Book in PDF, ePub and Kindle

This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.


Manipulating Quantum Systems

Manipulating Quantum Systems
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 315
Release: 2020-09-14
Genre: Science
ISBN: 0309499542

Download Manipulating Quantum Systems Book in PDF, ePub and Kindle

The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.


Strongly Correlated Phenomena with Ultracold Atomic Gases

Strongly Correlated Phenomena with Ultracold Atomic Gases
Author: Adilet Imambekov
Publisher:
Total Pages: 269
Release: 2007
Genre: Bosons
ISBN: 9780549037415

Download Strongly Correlated Phenomena with Ultracold Atomic Gases Book in PDF, ePub and Kindle

In this thesis we investigate strongly correlated phenomena in the field of ultracold atomic gases. Chapter 2 addresses a question of the insulating phases of cold spin-one bosonic particles with antiferromagnetic interactions, such as 23Na, in optical lattices. Magnetic properties of the ground state in the insulating regime are studied using various techniques. Chapter 3 considers a one dimensional interacting Bose-Fermi mixture with equal masses of bosons and fermions, and with equal repulsive interactions between Bose-Fermi and Bose-Bose particles. Properties of such mixture are studied using exact Bethe-ansatz techniques. Chapter 4 deals with certain phenomena which appear in the experiments with imbalanced fermionic mixtures in strongly anisotropic traps. Chapter 5 gives a comprehensive review of interference phenomena, analyzing effects which contribute to the reduction of the interference fringe contrast in matter interferometers.


Strongly Interacting Quantum Systems out of Equilibrium

Strongly Interacting Quantum Systems out of Equilibrium
Author: Thierry Giamarchi
Publisher: Oxford University Press
Total Pages: 464
Release: 2016-07-07
Genre: Science
ISBN: 0191080543

Download Strongly Interacting Quantum Systems out of Equilibrium Book in PDF, ePub and Kindle

Over the last decade new experimental tools and theoretical concepts are providing new insights into collective nonequilibrium behavior of quantum systems. The exquisite control provided by laser trapping and cooling techniques allows us to observe the behavior of condensed bose and degenerate Fermi gases under nonequilibrium drive or after `quenches' in which a Hamiltonian parameter is suddenly or slowly changed. On the solid state front, high intensity short-time pulses and fast (femtosecond) probes allow solids to be put into highly excited states and probed before relaxation and dissipation occur. Experimental developments are matched by progress in theoretical techniques ranging from exact solutions of strongly interacting nonequilibrium models to new approaches to nonequilibrium numerics. The summer school `Strongly interacting quantum systems out of equilibrium' held at the Les Houches School of Physics as its XCIX session was designed to summarize this progress, lay out the open questions and define directions for future work. This books collects the lecture notes of the main courses given in this summer school.