Field Theory Of Condensed Matter And Ultracold Gases PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Field Theory Of Condensed Matter And Ultracold Gases PDF full book. Access full book title Field Theory Of Condensed Matter And Ultracold Gases.

Field Theory Of Condensed Matter And Ultracold Gases - Volume 1

Field Theory Of Condensed Matter And Ultracold Gases - Volume 1
Author: Nicolas Dupuis
Publisher: World Scientific
Total Pages: 689
Release: 2023-07-26
Genre: Science
ISBN: 180061392X

Download Field Theory Of Condensed Matter And Ultracold Gases - Volume 1 Book in PDF, ePub and Kindle

This book provides a pedagogical introduction to the concepts and methods of quantum field theory necessary for the study of condensed matter and ultracold atomic gases. After a thorough discussion of the basic methods of field theory and many-body physics (functional integrals, perturbation theory, Feynman diagrams, correlation functions and linear response theory, symmetries and their consequences, etc.), the book covers a wide range of topics, from electron gas and Fermi-liquid theory to superfluidity and superconductivity, magnetic instabilities in electron systems, and dynamical mean-field theory of Mott transition. The focus is on the study of model Hamiltonians, where the microscopic physics and characteristic energy scales are encoded into a few effective parameters, rather than first-principle methods which start from a realistic Hamiltonian at the microscopic level and then make material-specific predictions. The reader is expected to be familiar with elementary quantum mechanics and statistical physics, and some acquaintance with condensed-matter physics and ultracold gases may also be useful. No prior knowledge of field theory or many-body problem is required.


Field Theory of Condensed Matter and Ultracold Gases

Field Theory of Condensed Matter and Ultracold Gases
Author: Nicolas Dupuis
Publisher: Wspc (Europe)
Total Pages: 0
Release: 2023-07-26
Genre: Cold gases
ISBN: 9781800613904

Download Field Theory of Condensed Matter and Ultracold Gases Book in PDF, ePub and Kindle

This book provides a pedagogical introduction to the concepts and methods of quantum field theory necessary for the study of condensed matter and ultracold atomic gases. After a thorough discussion of the basic methods of field theory and many-body physics (functional integrals, perturbation theory, Feynman diagrams, correlation functions and linear response theory, symmetries and their consequences, etc.), the book covers a wide range of topics, from electron gas and Fermi-liquid theory to superfluidity and superconductivity, magnetic instabilities in electron systems, and dynamical mean-field theory of Mott transition. The focus is on the study of model Hamiltonians, where the microscopic physics and characteristic energy scales are encoded into a few effective parameters, rather than first-principle methods which start from a realistic Hamiltonian at the microscopic level and then make material-specific predictions. The reader is expected to be familiar with elementary quantum mechanics and statistical physics, and some acquaintance with condensed-matter physics and ultracold gases may also be useful. No prior knowledge of field theory or many-body problem is required.


Condensed Matter Field Theory

Condensed Matter Field Theory
Author: Alexander Altland
Publisher: Cambridge University Press
Total Pages: 785
Release: 2010-03-11
Genre: Science
ISBN: 0521769752

Download Condensed Matter Field Theory Book in PDF, ePub and Kindle

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.


Many-Body Physics with Ultracold Gases

Many-Body Physics with Ultracold Gases
Author: Christophe Salomon
Publisher: Oxford University Press (UK)
Total Pages: 374
Release: 2013
Genre: Science
ISBN: 019966188X

Download Many-Body Physics with Ultracold Gases Book in PDF, ePub and Kindle

This book provides authoritative tutorials on the most recent achievements in the field of quantum gases at the interface between atomic physics and quantum optics, condensed matter physics, nuclear and high-energy physics, non-linear physics, and quantum information.


Ultracold Quantum Fields

Ultracold Quantum Fields
Author: Henk T. C. Stoof
Publisher: Springer Science & Business Media
Total Pages: 485
Release: 2008-11-30
Genre: Technology & Engineering
ISBN: 1402087632

Download Ultracold Quantum Fields Book in PDF, ePub and Kindle

On June 19th 1999, the European Ministers of Education signed the Bologna Dec laration, with which they agreed that the European university education should be uniformized throughout Europe and based on the two cycle bachelor master’s sys tem. The Institute for Theoretical Physics at Utrecht University quickly responded to this new challenge and created an international master’s programme in Theoret ical Physics which started running in the summer of 2000. At present, the master’s programme is a so called prestige master at Utrecht University, and it aims at train ing motivated students to become sophisticated researchers in theoretical physics. The programme is built on the philosophy that modern theoretical physics is guided by universal principles that can be applied to any sub?eld of physics. As a result, the basis of the master’s programme consists of the obligatory courses Statistical Field Theory and Quantum Field Theory. These focus in particular on the general concepts of quantum ?eld theory, rather than on the wide variety of possible applica tions. These applications are left to optional courses that build upon the ?rm concep tual basis given in the obligatory courses. The subjects of these optional courses in clude, for instance, Strongly Correlated Electrons, Spintronics, Bose Einstein Con densation, The Standard Model, Cosmology, and String Theory.


Functional Renormalization and Ultracold Quantum Gases

Functional Renormalization and Ultracold Quantum Gases
Author: Stefan Flörchinger
Publisher: Springer Science & Business Media
Total Pages: 200
Release: 2010-09-14
Genre: Science
ISBN: 3642141137

Download Functional Renormalization and Ultracold Quantum Gases Book in PDF, ePub and Kindle

Modern techniques from quantum field theory are applied in this work to the description of ultracold quantum gases. This leads to a unified description of many phenomena including superfluidity for bosons and fermions, classical and quantum phase transitions, different dimensions, thermodynamic properties and few-body phenomena as bound state formation or the Efimov effect. The non-perturbative treatment with renormalization group flow equations can account for all known limiting cases by solving one single equation. It improves previous results quantitatively and brings qualitatively new insights. As an example, new quantum phase transitions are found for fermions with three spin states. Ultracold atomic gases can be seen as an interesting model for features of high energy physics and for condensed matter theory. The research reported in this thesis helps to solve the difficult complexity problem in modern theoretical physics.


Ultracold Bosonic and Fermionic Gases

Ultracold Bosonic and Fermionic Gases
Author: Kathryn Levin
Publisher: Elsevier
Total Pages: 226
Release: 2012-07-30
Genre: Science
ISBN: 0444538577

Download Ultracold Bosonic and Fermionic Gases Book in PDF, ePub and Kindle

The rapidly developing topic of ultracold atoms has many actual and potential applications for condensed-matter science, and the contributions to this book emphasize these connections. Ultracold Bose and Fermi quantum gases are introduced at a level appropriate for first-year graduate students and non-specialists such as more mature general physicists. The reader will find answers to questions like: how are experiments conducted and how are the results interpreted? What are the advantages and limitations of ultracold atoms in studying many-body physics? How do experiments on ultracold atoms facilitate novel scientific opportunities relevant to the condensed-matted community? This volume seeks to be comprehensible rather than comprehensive; it aims at the level of a colloquium, accessible to outside readers, containing only minimal equations and limited references. In large part, it relies on many beautiful experiments from the past fifteen years and their very fruitful interplay with basic theoretical ideas. In this particular context, phenomena most relevant to condensed-matter science have been emphasized. Introduces ultracold Bose and Fermi quantum gases at a level appropriate for non-specialists Discusses landmark experiments and their fruitful interplay with basic theoretical ideas Comprehensible rather than comprehensive, containing only minimal equations


Ultracold Atoms in Optical Lattices

Ultracold Atoms in Optical Lattices
Author: Maciej Lewenstein
Publisher: Oxford University Press
Total Pages: 494
Release: 2012-03-08
Genre: Science
ISBN: 0199573123

Download Ultracold Atoms in Optical Lattices Book in PDF, ePub and Kindle

This book explores the physics of atoms frozen to ultralow temperatures and trapped in periodic light structures. It introduces the reader to the spectacular progress achieved on the field of ultracold gases and describes present and future challenges in condensed matter physics, high energy physics, and quantum computation.


Quantum Gases: Finite Temperature And Non-equilibrium Dynamics

Quantum Gases: Finite Temperature And Non-equilibrium Dynamics
Author: Nick P Proukakis
Publisher: World Scientific
Total Pages: 579
Release: 2013-02-21
Genre: Science
ISBN: 1908979704

Download Quantum Gases: Finite Temperature And Non-equilibrium Dynamics Book in PDF, ePub and Kindle

The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems.This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of editorial notes.Both graduate students and established researchers wishing to understand the state of the art will greatly benefit from this comprehensive and up-to-date review of non-equilibrium and finite temperature techniques in the exciting and expanding field of quantum gases and liquids./a


Ultracold Atoms in Optical Lattices

Ultracold Atoms in Optical Lattices
Author: Maciej Lewenstein
Publisher: OUP Oxford
Total Pages: 494
Release: 2012-03-08
Genre: Science
ISBN: 0191627437

Download Ultracold Atoms in Optical Lattices Book in PDF, ePub and Kindle

Quantum computers, though not yet available on the market, will revolutionize the future of information processing. Quantum computers for special purposes like quantum simulators are already within reach. The physics of ultracold atoms, ions and molecules offer unprecedented possibilities of control of quantum many body systems and novel possibilities of applications to quantum information processing and quantum metrology. Particularly fascinating is the possibility of using ultracold atoms in lattices to simulate condensed matter or even high energy physics. This book provides a complete and comprehensive overview of ultracold lattice gases as quantum simulators. It opens up an interdisciplinary field involving atomic, molecular and optical physics, quantum optics, quantum information, condensed matter and high energy physics. The book includes some introductory chapters on basic concepts and methods, and then focuses on the physics of spinor, dipolar, disordered, and frustrated lattice gases. It reviews in detail the physics of artificial lattice gauge fields with ultracold gases. The last part of the book covers simulators of quantum computers. After a brief course in quantum information theory, the implementations of quantum computation with ultracold gases are discussed, as well as our current understanding of condensed matter from a quantum information perspective.