Field Quantization PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Field Quantization PDF full book. Access full book title Field Quantization.

Field Quantization

Field Quantization
Author: Walter Greiner
Publisher: Springer Science & Business Media
Total Pages: 447
Release: 2013-06-29
Genre: Science
ISBN: 364261485X

Download Field Quantization Book in PDF, ePub and Kindle

Theoretical physics has become a many-faceted science. For the young stu dent it is difficult enough to cope with the overwhelming amount of new scientific material that has to be learned, let alone obtain an overview of the entire field, which ranges from mechanics through electrodynamics, quantum mechanics, field theory, nuclear and heavy-ion science, statistical mechanics, thermodynamics, and solid-state theory to elementary-particle physics. And this knowledge should be acquired in just 8-10 semesters, during which, in addition, a Diploma or Master's thesis has to be worked on or examinations prepared for. All this can be achieved only if the university teachers help to introduce the student to the new disciplines as early on as possible, in order to create interest and excitement that in turn set free essential new energy. At the Johann Wolfgang Goethe University in Frankfurt we therefore con front the student with theoretical physics immediately, in the first semester. Theoretical Mechanics I and II, Electrodynamics, and Quantum Mechanics I - An Introduction are the basic courses during the first two years. These lectures are supplemented with many mathematical explanations and much support material. After the fourth semester of studies, graduate work begins, and Quantum Mechanics II - Symmetries, Statistical Mechanics and Ther modynamics, Relativistic Quantum Mechanics, Quantum Electrodynamics, the Gauge Theory of Weak Interactions, and Quantum Chromo dynamics are obligatory.


Quantization of Fields with Constraints

Quantization of Fields with Constraints
Author: Dmitri Gitman
Publisher: Springer Science & Business Media
Total Pages: 301
Release: 2012-12-06
Genre: Science
ISBN: 364283938X

Download Quantization of Fields with Constraints Book in PDF, ePub and Kindle

Gauge field theories underlie all models now used in elementary particle physics. These theories refer to the class of singular theories which are also theories with constraints. The quantization of singular theories remains one of the key problems of quantum field theory and is being intensively discussed in the literature. This book is an attempt to fill the need for a comprehensive analysis of this problem, which has not heretofore been met by the available monographs and reviews. The main topics are canonical quantization and the path integral method. In addition, the Lagrangian BRST quantization is completely described, for the first time in a monograph. The book also presents a number of original results obtained by the authors, in particular, a complete description of the physical sector of an arbitrary gauge theory, quantization of singular theories with higher theories with time-dependent constraints, and correct derivatives, quantization of canonical quantization of theories of a relativistic point-like particle. As a general illustration we present quantization of field theories such as electrodynamics, Yang-Mills theory, and gravity. It should be noted that this monograph is aimed not only at giving the reader the rules of quantization according to the principle "if you do it this way, it will be good", but also at presenting strong arguments based on the modem interpretation of the classical and quantum theories which show that these methods· are the natural, if not the only possible ones.


An Introduction to Field Quantization

An Introduction to Field Quantization
Author: Y. Takahashi
Publisher: Elsevier
Total Pages: 311
Release: 2016-09-20
Genre: Science
ISBN: 148318627X

Download An Introduction to Field Quantization Book in PDF, ePub and Kindle

An Introduction to Field Quantization is an introductory discussion of field quantization and problems closely related to it. Field quantization establishes a commutation relation of the field and finds an operator in such a manner that the Heisenberg equation of motion is satisfied. This book contains eight chapters and begins with a review of the quantization of the Schroedinger field and the close relation between quantized field theory and the many-body theory in quantum mechanics. These topics are followed by discussions of the quantization of the radiation field and the field of lattice vibrations in a solid. The succeeding chapter deals with the familiar linear equations in relativistic field theory and the deduction of certain spin independent theories, which these fields have in common. Other chapter explores the derivation technique of the conservation laws for fields with arbitrary spin directly from the field equations without explicit recourse to Noether's theorem using a configuration space version of the generalized Ward identity. The discussion then shifts to the relativistic quantization method applicable to any field with arbitrary spin; the transformation of various fields under the Lorentz transformation; and a general method for constructing wave functions explicitly, as well as the application of this method to several examples. The concluding chapter focuses on the quantization of interacting fields. This book will prove useful to physicists and researchers.


Selected Topics in Field Quantization

Selected Topics in Field Quantization
Author: Wolfgang Pauli
Publisher: Courier Corporation
Total Pages: 212
Release: 2000-01-01
Genre: Science
ISBN: 9780486414591

Download Selected Topics in Field Quantization Book in PDF, ePub and Kindle

In the 1950s the distinguished theoretical physicist Wolfgang Pauli delivered a landmark series of lectures at the Swiss Federal Institute of Technology in Zurich. His comprehensive coverage of the fundamentals of classical and modern physics was painstakingly recorded not only by his students, but also by a number of collaborators whose carefully edited transcriptions resulted in a remarkable six-volume work. This volume, the sixth in the series, focuses on selected topics in field quantization and considers such subjects as quantization of the electron-positron field, response to an external field, quantization of free fields, quantum electrodynamics, interacting fields, the Heisenberg representation, the S-matrix, and Feynman's approach to quantum electrodynamics. As does each book in the series, Volume 6 includes an index and a wealth of helpful figures. Originally published in 1973, the text remains entirely relevant thanks to Pauli's manner of presentation. As Victor F. Weisskopf notes in the Foreword to the series, Pauli's style is "commensurate to the greatness of its subject in its clarity and impact…. Pauli's lectures show how physical ideas can be presented clearly


Field Theory, Quantization and Statistical Physics

Field Theory, Quantization and Statistical Physics
Author: E. Tirapegui
Publisher: Springer Science & Business Media
Total Pages: 333
Release: 2012-12-06
Genre: Science
ISBN: 9400983689

Download Field Theory, Quantization and Statistical Physics Book in PDF, ePub and Kindle

It is with great emotion that we present here this volume dedicated to the memory of Bernard Jouvet, Docteur es Sciences, Directeur des Recher ches at the Centre National pour la Recherche Scientifique. The life and the career as a physicist of Professor Jouvet are evoked in the following pages by Professor F. Cerulus, a friend of long standing of Professor Jouvet. The contributions have been written by physicists who were friends, collaborators or former students of Professor Jouvet. I express here my gratitude for their contributions. I wish also to thank Mrs. France Jouvet for her kind help in the realiza tion of this book. Without her support this would have been impossible. I am also especially indebted to Professor M. Flato for his constant encouragement and kind cooperation, and to F. Langouche and D. Roekaerts for their generous help in the preparation of this volume. E. TIRAPEGUI TABLE OF CONTENTS FOREWORD VII BIOGRAPHICAL SKETCH XI XIX LIST OF SELECTED SCIENTIFIC PUBLICA TIONS PART ONE: FIELD THEORY AND QUANTIZATION C. BECCHI, A. ROUET and R. sToRA/Renormalizable Theories with Symmetry Breaking 3 J. CALMET and A. VISCONTI/Computing Methods in Quantum Electrodynamics 33 GERARD CLEMENT/Classical Mechanics of Autocomposite Particles 59 s. DEsER/Exclusion of Static Solutions in Gravity-Matter Coupling 77 D. ARNAL, J.C. COR TET, M. FLATO and D. STERNHEIMER/ Star-Products: Quantization and Representations without Operators 85 R. GASTMANs/High Energy Tests of Quantum Electrodynamics 113 L. GOMBEROFF and E.K.


Mathematics of Quantization and Quantum Fields

Mathematics of Quantization and Quantum Fields
Author: Jan Dereziński
Publisher: Cambridge University Press
Total Pages: 689
Release: 2023-01-31
Genre: Science
ISBN: 1009290827

Download Mathematics of Quantization and Quantum Fields Book in PDF, ePub and Kindle

This 2013 book, now OA, offers a definitive review of mathematical aspects of quantization and quantum field theory.


Enhanced Quantization: Particles, Fields & Gravity

Enhanced Quantization: Particles, Fields & Gravity
Author: John R Klauder
Publisher: World Scientific
Total Pages: 264
Release: 2015-02-04
Genre: Science
ISBN: 9814644641

Download Enhanced Quantization: Particles, Fields & Gravity Book in PDF, ePub and Kindle

This pioneering book addresses the question: Are the standard procedures of canonical quantization fully satisfactory, or is there more to learn about assigning a proper quantum system to a given classical system? As shown in this book, the answer to this question is: The standard procedures of canonical quantization are not the whole story!This book offers alternative quantization procedures that complete the story of quantization. The initial chapters are designed to present the new procedures in a clear and simple manner for general readers. As is necessary, systems that exhibit acceptable results with conventional quantization lead to the same results when the new procedures are used for them. However, later chapters examine selected models that lead to unacceptable results when quantized conventionally. Fortunately, these same models lead to acceptable results when the new quantization procedures are used.


Quantization of Fields

Quantization of Fields
Author: Andrey Nikolaevich Volobuev
Publisher:
Total Pages: 0
Release: 2018-09-24
Genre: Electromagnetic fields
ISBN: 9781536139266

Download Quantization of Fields Book in PDF, ePub and Kindle

In the book Quantization of Fields, the problems of electromagnetic and gravitational fields quantization are examined. Quantization of an electromagnetic field is carried out in photon space, i.e., in the reference system moving with a light velocity. This reference system accompanies a photon, therefore, it is possible to carry out the display of a photon to receive representation about its form and to investigate its parameters and properties. In photon space, the Schrodinger's nonlinear equation with logarithmic nonlinearity (which the wave function of a photon obeys) is found. On the basis of this equation, the problem of a material particle and photon interaction in photon space is investigated. It is shown that the interaction of a photon and material particle can be calculated in the closed form in photon space. Such calculations can be carried out only approximately by a method of the perturbations theory in Euclidian spaces. It is shown that during interaction of a photon and electron on the electron surface, there are waves propagating with a light velocity. The problem of a vacuum in the photon space and also multiphoton system in this space is investigated.During the quantization of a gravitational field, Einstein's equation for a field of gravitation as a basis is used. It is assumed that curved space-time (Riemann's space) is not quantized. Quantization is subjected to an energy-impulse tensor. It is supposed that the curvature of space-time due to the presence of the massive bodies does not create a strength condition in space. The part of corresponding components of an energy-impulse tensor is replaced with quantum sizes by a principle of formation for the quantum mechanics matrix form. On the basis of the quantum form of the gravitational field equation, the solution as a graviton-quantum of a gravitational field is received. It is shown that during the propagation of a graviton near a massive body, there is a pumping of the gravitation field energy in the graviton. Therefore, in the field of a massive body, the graviton is possible to register. When there is distance between the graviton and a massive body, its energy is pumped over back in a gravitation field of a massive body. Therefore, to registering the graviton far from a massive body is problematic. In the book, some standard questions of general relativity - the classical theory of gravitational radiation, the theory of gravitational waves, the Schwarzschild's theory of the solitary mass field, etc. - are submitted also.


Path Integral Quantization and Stochastic Quantization

Path Integral Quantization and Stochastic Quantization
Author: Michio Masujima
Publisher: Springer Science & Business Media
Total Pages: 286
Release: 2008-11-21
Genre: Science
ISBN: 3540878513

Download Path Integral Quantization and Stochastic Quantization Book in PDF, ePub and Kindle

In this book, we discuss the path integral quantization and the stochastic quantization of classical mechanics and classical field theory. Forthe description ofthe classical theory, we have two methods, one based on the Lagrangian formalism and the other based on the Hamiltonian formal ism. The Hamiltonian formalism is derived from the Lagrangian·formalism. In the standard formalism ofquantum mechanics, we usually make use ofthe Hamiltonian formalism. This fact originates from the following circumstance which dates back to the birth of quantum mechanics. The first formalism ofquantum mechanics is Schrodinger's wave mechan ics. In this approach, we regard the Hamilton-Jacobi equation of analytical mechanics as the Eikonal equation of "geometrical mechanics". Based on the optical analogy, we obtain the Schrodinger equation as a result ofthe inverse of the Eikonal approximation to the Hamilton-Jacobi equation, and thus we arrive at "wave mechanics". The second formalism ofquantum mechanics is Heisenberg's "matrix me chanics". In this approach, we arrive at the Heisenberg equation of motion from consideration of the consistency of the Ritz combination principle, the Bohr quantization condition and the Fourier analysis of a physical quantity. These two formalisms make up the Hamiltonian.formalism of quantum me chanics.


Geometric Quantization in Action

Geometric Quantization in Action
Author: N.E. Hurt
Publisher: Springer Science & Business Media
Total Pages: 362
Release: 1982-12-31
Genre: Mathematics
ISBN: 9789027714268

Download Geometric Quantization in Action Book in PDF, ePub and Kindle

Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then, is that they can't see the problem. one day, perhaps you will fmd the final question. G. K. Chesterton, The Scandal of Father Brown 'The Point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geo metry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical progmmming profit from homotopy theory; Lie algebras are relevant to fIltering; and prediction and electrical engineering can use Stein spaces.