Fault Tolerant And Efficient Parallel Computation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fault Tolerant And Efficient Parallel Computation PDF full book. Access full book title Fault Tolerant And Efficient Parallel Computation.

Fault-Tolerant Parallel Computation

Fault-Tolerant Parallel Computation
Author: Paris Christos Kanellakis
Publisher: Springer Science & Business Media
Total Pages: 203
Release: 2013-03-09
Genre: Computers
ISBN: 1475752105

Download Fault-Tolerant Parallel Computation Book in PDF, ePub and Kindle

Fault-Tolerant Parallel Computation presents recent advances in algorithmic ways of introducing fault-tolerance in multiprocessors under the constraint of preserving efficiency. The difficulty associated with combining fault-tolerance and efficiency is that the two have conflicting means: fault-tolerance is achieved by introducing redundancy, while efficiency is achieved by removing redundancy. This monograph demonstrates how in certain models of parallel computation it is possible to combine efficiency and fault-tolerance and shows how it is possible to develop efficient algorithms without concern for fault-tolerance, and then correctly and efficiently execute these algorithms on parallel machines whose processors are subject to arbitrary dynamic fail-stop errors. The efficient algorithmic approaches to multiprocessor fault-tolerance presented in this monograph make a contribution towards bridging the gap between the abstract models of parallel computation and realizable parallel architectures. Fault-Tolerant Parallel Computation presents the state of the art in algorithmic approaches to fault-tolerance in efficient parallel algorithms. The monograph synthesizes work that was presented in recent symposia and published in refereed journals by the authors and other leading researchers. This is the first text that takes the reader on the grand tour of this new field summarizing major results and identifying hard open problems. This monograph will be of interest to academic and industrial researchers and graduate students working in the areas of fault-tolerance, algorithms and parallel computation and may also be used as a text in a graduate course on parallel algorithmic techniques and fault-tolerance.


Fault-Tolerant Parallel and Distributed Systems

Fault-Tolerant Parallel and Distributed Systems
Author: Dimiter R. Avresky
Publisher: Springer Science & Business Media
Total Pages: 396
Release: 2012-12-06
Genre: Computers
ISBN: 1461554497

Download Fault-Tolerant Parallel and Distributed Systems Book in PDF, ePub and Kindle

The most important use of computing in the future will be in the context of the global "digital convergence" where everything becomes digital and every thing is inter-networked. The application will be dominated by storage, search, retrieval, analysis, exchange and updating of information in a wide variety of forms. Heavy demands will be placed on systems by many simultaneous re quests. And, fundamentally, all this shall be delivered at much higher levels of dependability, integrity and security. Increasingly, large parallel computing systems and networks are providing unique challenges to industry and academia in dependable computing, espe cially because of the higher failure rates intrinsic to these systems. The chal lenge in the last part of this decade is to build a systems that is both inexpensive and highly available. A machine cluster built of commodity hardware parts, with each node run ning an OS instance and a set of applications extended to be fault resilient can satisfy the new stringent high-availability requirements. The focus of this book is to present recent techniques and methods for im plementing fault-tolerant parallel and distributed computing systems. Section I, Fault-Tolerant Protocols, considers basic techniques for achieving fault-tolerance in communication protocols for distributed systems, including synchronous and asynchronous group communication, static total causal order ing protocols, and fail-aware datagram service that supports communications by time.


Parallel and Distributed Processing

Parallel and Distributed Processing
Author: Jose Rolim
Publisher: Springer Science & Business Media
Total Pages: 1194
Release: 1998-03-18
Genre: Computers
ISBN: 9783540643593

Download Parallel and Distributed Processing Book in PDF, ePub and Kindle

This book constitutes the refereed proceedings of 10 international workshops held in conjunction with the merged 1998 IPPS/SPDP symposia, held in Orlando, Florida, US in March/April 1998. The volume comprises 118 revised full papers presenting cutting-edge research or work in progress. In accordance with the workshops covered, the papers are organized in topical sections on reconfigurable architectures, run-time systems for parallel programming, biologically inspired solutions to parallel processing problems, randomized parallel computing, solving combinatorial optimization problems in parallel, PC based networks of workstations, fault-tolerant parallel and distributed systems, formal methods for parallel programming, embedded HPC systems and applications, and parallel and distributed real-time systems.


Information Dispersal and Parallel Computation

Information Dispersal and Parallel Computation
Author: Yuh-Dauh Lyuu
Publisher:
Total Pages: 179
Release: 1992
Genre: Computers
ISBN: 9780521432269

Download Information Dispersal and Parallel Computation Book in PDF, ePub and Kindle

A fundamentally new approach to the problems of fault-tolerant routing and memory management in parallel computation.


Languages and Compilers for Parallel Computing

Languages and Compilers for Parallel Computing
Author: Călin Cașcaval
Publisher: Springer
Total Pages: 364
Release: 2014-09-30
Genre: Computers
ISBN: 3319099671

Download Languages and Compilers for Parallel Computing Book in PDF, ePub and Kindle

This book constitutes the thoroughly refereed post-conference proceedings of the 26th International Workshop on Languages and Compilers for Parallel Computing, LCPC 2013, held in Tokyo, Japan, in September 2012. The 20 revised full papers and two keynote papers presented were carefully reviewed and selected from 44 submissions. The focus of the papers is on following topics: parallel programming models, compiler analysis techniques, parallel data structures and parallel execution models, to GPGPU and other heterogeneous execution models, code generation for power efficiency on mobile platforms, and debugging and fault tolerance for parallel systems.


Parallel Processing for Scientific Computing

Parallel Processing for Scientific Computing
Author: Michael A. Heroux
Publisher: SIAM
Total Pages: 407
Release: 2006-01-01
Genre: Computers
ISBN: 0898716195

Download Parallel Processing for Scientific Computing Book in PDF, ePub and Kindle

Scientific computing has often been called the third approach to scientific discovery, emerging as a peer to experimentation and theory. Historically, the synergy between experimentation and theory has been well understood: experiments give insight into possible theories, theories inspire experiments, experiments reinforce or invalidate theories, and so on. As scientific computing has evolved to produce results that meet or exceed the quality of experimental and theoretical results, it has become indispensable.Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering. This edited volume serves as an up-to-date reference for researchers and application developers on the state of the art in scientific computing. It also serves as an excellent overview and introduction, especially for graduate and senior-level undergraduate students interested in computational modeling and simulation and related computer science and applied mathematics aspects.Contents List of Figures; List of Tables; Preface; Chapter 1: Frontiers of Scientific Computing: An Overview; Part I: Performance Modeling, Analysis and Optimization. Chapter 2: Performance Analysis: From Art to Science; Chapter 3: Approaches to Architecture-Aware Parallel Scientific Computation; Chapter 4: Achieving High Performance on the BlueGene/L Supercomputer; Chapter 5: Performance Evaluation and Modeling of Ultra-Scale Systems; Part II: Parallel Algorithms and Enabling Technologies. Chapter 6: Partitioning and Load Balancing; Chapter 7: Combinatorial Parallel and Scientific Computing; Chapter 8: Parallel Adaptive Mesh Refinement; Chapter 9: Parallel Sparse Solvers, Preconditioners, and Their Applications; Chapter 10: A Survey of Parallelization Techniques for Multigrid Solvers; Chapter 11: Fault Tolerance in Large-Scale Scientific Computing; Part III: Tools and Frameworks for Parallel Applications. Chapter 12: Parallel Tools and Environments: A Survey; Chapter 13: Parallel Linear Algebra Software; Chapter 14: High-Performance Component Software Systems; Chapter 15: Integrating Component-Based Scientific Computing Software; Part IV: Applications of Parallel Computing. Chapter 16: Parallel Algorithms for PDE-Constrained Optimization; Chapter 17: Massively Parallel Mixed-Integer Programming; Chapter 18: Parallel Methods and Software for Multicomponent Simulations; Chapter 19: Parallel Computational Biology; Chapter 20: Opportunities and Challenges for Parallel Computing in Science and Engineering; Index.