Fault Diagnosis Of Nonlinear Systems Using A Hybrid Approach PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fault Diagnosis Of Nonlinear Systems Using A Hybrid Approach PDF full book. Access full book title Fault Diagnosis Of Nonlinear Systems Using A Hybrid Approach.

Fault Diagnosis of Nonlinear Systems Using a Hybrid Approach

Fault Diagnosis of Nonlinear Systems Using a Hybrid Approach
Author: Ehsan Sobhani-Tehrani
Publisher: Springer
Total Pages: 275
Release: 2009-06-06
Genre: Technology & Engineering
ISBN: 038792907X

Download Fault Diagnosis of Nonlinear Systems Using a Hybrid Approach Book in PDF, ePub and Kindle

Theincreasingcomplexityofspacevehiclessuchassatellites,andthecostreduction measures that have affected satellite operators are increasingly driving the need for more autonomy in satellite diagnostics and control systems. Current methods for detecting and correcting anomalies onboard the spacecraft as well as on the ground are primarily manual and labor intensive, and therefore, tend to be slow. Operators inspect telemetry data to determine the current satellite health. They use various statisticaltechniques andmodels,buttheanalysisandevaluation ofthelargevolume of data still require extensive human intervention and expertise that is prone to error. Furthermore, for spacecraft and most of these satellites, there can be potentially unduly long delays in round-trip communications between the ground station and the satellite. In this context, it is desirable to have onboard fault-diagnosis system that is capable of detecting, isolating, identifying or classifying faults in the system withouttheinvolvementandinterventionofoperators.Towardthisend,theprinciple goal here is to improve the ef?ciency, accuracy, and reliability of the trend analysis and diagnostics techniques through utilization of intelligent-based and hybrid-based methodologies.


Fault Diagnosis of Nonlinear Systems Using a Hybrid Approach

Fault Diagnosis of Nonlinear Systems Using a Hybrid Approach
Author: Ehsan Sobhani-Tehrani
Publisher: Springer Science & Business Media
Total Pages: 275
Release: 2009-06-22
Genre: Technology & Engineering
ISBN: 0387929061

Download Fault Diagnosis of Nonlinear Systems Using a Hybrid Approach Book in PDF, ePub and Kindle

Theincreasingcomplexityofspacevehiclessuchassatellites,andthecostreduction measures that have affected satellite operators are increasingly driving the need for more autonomy in satellite diagnostics and control systems. Current methods for detecting and correcting anomalies onboard the spacecraft as well as on the ground are primarily manual and labor intensive, and therefore, tend to be slow. Operators inspect telemetry data to determine the current satellite health. They use various statisticaltechniques andmodels,buttheanalysisandevaluation ofthelargevolume of data still require extensive human intervention and expertise that is prone to error. Furthermore, for spacecraft and most of these satellites, there can be potentially unduly long delays in round-trip communications between the ground station and the satellite. In this context, it is desirable to have onboard fault-diagnosis system that is capable of detecting, isolating, identifying or classifying faults in the system withouttheinvolvementandinterventionofoperators.Towardthisend,theprinciple goal here is to improve the ef?ciency, accuracy, and reliability of the trend analysis and diagnostics techniques through utilization of intelligent-based and hybrid-based methodologies.


Fault Detection, Isolation, and Identification for Nonlinear Systems Using a Hybrid Approach

Fault Detection, Isolation, and Identification for Nonlinear Systems Using a Hybrid Approach
Author: Ehsan Sobahni-Tehrani
Publisher:
Total Pages: 0
Release: 2008
Genre:
ISBN:

Download Fault Detection, Isolation, and Identification for Nonlinear Systems Using a Hybrid Approach Book in PDF, ePub and Kindle

This thesis presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems; taking advantage of both system's mathematical model and the adaptive nonlinear approximation capability of computational intelligence techniques. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution are a bank of adaptive neural parameter estimators (NPE) and a set of single-parameterized fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. In view of the availability of full-state measurements, two NPE structures, namely series-parallel and parallel, are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Simple neural network architecture and update laws make both schemes suitable for real-time implementations. A fault tolerant observer (FTO) is then designed to extend the FDII schemes to systems with partial-state measurement. The proposed FTO is a neural state estimator that can estimate unmeasured states even in presence of faults. The estimated and the measured states then comprise the inputs to the FDII schemes. Simulation results for FDII of reaction wheels of a 3-axis stabilized satellite in presence of disturbances and noise demonstrate the effectiveness of the proposed FDII solution under both full and partial-state measurements.


A Hybrid Approach for Power Plant Fault Diagnostics

A Hybrid Approach for Power Plant Fault Diagnostics
Author: Tamiru Alemu Lemma
Publisher: Springer
Total Pages: 283
Release: 2017-12-30
Genre: Technology & Engineering
ISBN: 3319718711

Download A Hybrid Approach for Power Plant Fault Diagnostics Book in PDF, ePub and Kindle

This book provides a hybrid approach to fault detection and diagnostics. It presents a detailed analysis related to practical applications of the fault detection and diagnostics framework, and highlights recent findings on power plant nonlinear model identification and fault diagnostics. The effectiveness of the methods presented is tested using data acquired from actual cogeneration and cooling plants (CCPs). The models presented were developed by applying Neuro-Fuzzy (NF) methods. The book offers a valuable resource for researchers and practicing engineers alike.


Model-based Health Monitoring of Hybrid Systems

Model-based Health Monitoring of Hybrid Systems
Author: Danwei Wang
Publisher: Springer Science & Business Media
Total Pages: 306
Release: 2013-05-23
Genre: Computers
ISBN: 1461473691

Download Model-based Health Monitoring of Hybrid Systems Book in PDF, ePub and Kindle

This book systematically presents a comprehensive framework and effective techniques for in-depth analysis, clear design procedure, and efficient implementation of diagnosis and prognosis algorithms for hybrid systems. It offers an overview of the fundamentals of diagnosis\prognosis and hybrid bond graph modeling. This book also describes hybrid bond graph-based quantitative fault detection, isolation and estimation. Moreover, it also presents strategies to track the system mode and predict the remaining useful life under multiple fault condition. A real world complex hybrid system—a vehicle steering control system—is studied using the developed fault diagnosis methods to show practical significance. Readers of this book will benefit from easy-to-understand fundamentals of bond graph models, concepts of health monitoring, fault diagnosis and failure prognosis, as well as hybrid systems. The reader will gain knowledge of fault detection and isolation in complex systems including those with hybrid nature, and will learn state-of-the-art developments in theory and technologies of fault diagnosis and failure prognosis for complex systems.


Fault Detection and Diagnosis in Nonlinear Systems

Fault Detection and Diagnosis in Nonlinear Systems
Author: Rafael Martinez-Guerra
Publisher: Springer
Total Pages: 143
Release: 2013-11-19
Genre: Technology & Engineering
ISBN: 3319030477

Download Fault Detection and Diagnosis in Nonlinear Systems Book in PDF, ePub and Kindle

The high reliability required in industrial processes has created the necessity of detecting abnormal conditions, called faults, while processes are operating. The term fault generically refers to any type of process degradation, or degradation in equipment performance because of changes in the process's physical characteristics, process inputs or environmental conditions. This book is about the fundamentals of fault detection and diagnosis in a variety of nonlinear systems which are represented by ordinary differential equations. The fault detection problem is approached from a differential algebraic viewpoint, using residual generators based upon high-gain nonlinear auxiliary systems (‘observers’). A prominent role is played by the type of mathematical tools that will be used, requiring knowledge of differential algebra and differential equations. Specific theorems tailored to the needs of the problem-solving procedures are developed and proved. Applications to real-world problems, both with constant and time-varying faults, are made throughout the book and include electromechanical positioning systems, the Continuous Stirred Tank Reactor (CSTR), bioreactor models and belt drive systems, to name but a few.


Fault Diagnosis of Dynamic Systems

Fault Diagnosis of Dynamic Systems
Author: Teresa Escobet
Publisher: Springer
Total Pages: 462
Release: 2019-06-22
Genre: Technology & Engineering
ISBN: 3030177289

Download Fault Diagnosis of Dynamic Systems Book in PDF, ePub and Kindle

Fault Diagnosis of Dynamic Systems provides readers with a glimpse into the fundamental issues and techniques of fault diagnosis used by Automatic Control (FDI) and Artificial Intelligence (DX) research communities. The book reviews the standard techniques and approaches widely used in both communities. It also contains benchmark examples and case studies that demonstrate how the same problem can be solved using the presented approaches. The book also introduces advanced fault diagnosis approaches that are currently still being researched, including methods for non-linear, hybrid, discrete-event and software/business systems, as well as, an introduction to prognosis. Fault Diagnosis of Dynamic Systems is valuable source of information for researchers and engineers starting to work on fault diagnosis and willing to have a reference guide on the main concepts and standard approaches on fault diagnosis. Readers with experience on one of the two main communities will also find it useful to learn the fundamental concepts of the other community and the synergies between them. The book is also open to researchers or academics who are already familiar with the standard approaches, since they will find a collection of advanced approaches with more specific and advanced topics or with application to different domains. Finally, engineers and researchers looking for transferable fault diagnosis methods will also find useful insights in the book.


Block-oriented Nonlinear System Identification

Block-oriented Nonlinear System Identification
Author: Fouad Giri
Publisher: Springer Science & Business Media
Total Pages: 425
Release: 2010-08-18
Genre: Technology & Engineering
ISBN: 1849965129

Download Block-oriented Nonlinear System Identification Book in PDF, ePub and Kindle

Block-oriented Nonlinear System Identification deals with an area of research that has been very active since the turn of the millennium. The book makes a pedagogical and cohesive presentation of the methods developed in that time. These include: iterative and over-parameterization techniques; stochastic and frequency approaches; support-vector-machine, subspace, and separable-least-squares methods; blind identification method; bounded-error method; and decoupling inputs approach. The identification methods are presented by authors who have either invented them or contributed significantly to their development. All the important issues e.g., input design, persistent excitation, and consistency analysis, are discussed. The practical relevance of block-oriented models is illustrated through biomedical/physiological system modelling. The book will be of major interest to all those who are concerned with nonlinear system identification whatever their activity areas. This is particularly the case for educators in electrical, mechanical, chemical and biomedical engineering and for practising engineers in process, aeronautic, aerospace, robotics and vehicles control. Block-oriented Nonlinear System Identification serves as a reference for active researchers, new comers, industrial and education practitioners and graduate students alike.


Fault Diagnosis in Nonlinear Systems Using Learning and Sliding Mode Approaches with Applications for Satellite Control Systems

Fault Diagnosis in Nonlinear Systems Using Learning and Sliding Mode Approaches with Applications for Satellite Control Systems
Author: Qing Wu
Publisher:
Total Pages: 0
Release: 2008
Genre: Fault location (Engineering)
ISBN:

Download Fault Diagnosis in Nonlinear Systems Using Learning and Sliding Mode Approaches with Applications for Satellite Control Systems Book in PDF, ePub and Kindle

In this thesis, model based fault detection, isolation, and estimation problem in several classes of nonlinear systems is studied using sliding mode and learning approaches. First, a fault diagnosis scheme using a bank of repetitive learning observers is presented. The diagnostic observers are established in a generalized observer scheme, and the observer inputs are repetitively updated using the output estimation error in a proportional-integral structure. Next, a framework for robust fault diagnosis using sliding mode and learning approaches is proposed to deal with various types of faults in a class of nonlinear systems with triangular input form. In the designed diagnostic observers, first order and second order sliding modes are used respectively, to achieve robust state estimation in the presence of uncertainties, and additional online estimators are established to characterize the faults. In order to guarantee that the sliding mode is able to distinguish the system uncertainties from the faults, two iterative adaptive laws are used to update the sliding mode switching gains. Moreover, different online fault estimators are developed using neural state space models, iterative learning algorithms, and wavelet networks. Another class of nonlinear systems where an unmeasurable part of state can be described as a nonlinear function of the output and its derivatives is considered next. Accordingly, a class of fault diagnosis schemes using high order sliding mode differentiators (HOSMDs) and online estimators are proposed, where neural adaptive estimators and iterative neuron PID estimators are designed. Additionally, a fault diagnosis scheme using HOSMDs and neural networks based uncertainty observers is designed in order to achieve a better performance in robust fault detection. If the uncertainties can be accurately estimated, the generated diagnostic residual is more sensitive to the onset of faults. Finally, a fault diagnosis scheme using Takagi-Sugeno (TS) fuzzy models, neural networks, and sliding mode is developed. The availability of TS fuzzy models makes this fault diagnosis scheme applicable to a wider class of nonlinear systems. The proposed fault diagnosis schemes are applied to several types of satellite control systems, and the simulation results demonstrate their performance.


Emergent Problems in Nonlinear Systems and Control

Emergent Problems in Nonlinear Systems and Control
Author: Bijoy Ghosh
Publisher: Springer
Total Pages: 288
Release: 2009-10-13
Genre: Technology & Engineering
ISBN: 3642036279

Download Emergent Problems in Nonlinear Systems and Control Book in PDF, ePub and Kindle

Papers in this collection partly represent the set of talks that were presented at Texas Tech University on the occasion of Daya’s memorial workshop in the year 2007. Daya had a varied interest in the field of Dynamics and Control Theory and the papers bring out the essence of his involvement in these activities. He also had a large number of collaborators and this collection represent a good fraction of them. The papers included here cover his interest in control theory. Also included are papers from application areas that we believe are of strong interest to him.