Fault Diagnosis In Nonlinear Systems Using Learning And Sliding Mode Approaches With Applications For Satellite Control Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fault Diagnosis In Nonlinear Systems Using Learning And Sliding Mode Approaches With Applications For Satellite Control Systems PDF full book. Access full book title Fault Diagnosis In Nonlinear Systems Using Learning And Sliding Mode Approaches With Applications For Satellite Control Systems.

Fault Diagnosis in Nonlinear Systems Using Learning and Sliding Mode Approaches with Applications for Satellite Control Systems

Fault Diagnosis in Nonlinear Systems Using Learning and Sliding Mode Approaches with Applications for Satellite Control Systems
Author: Qing Wu
Publisher:
Total Pages: 406
Release: 2008
Genre: Fault location (Engineering)
ISBN:

Download Fault Diagnosis in Nonlinear Systems Using Learning and Sliding Mode Approaches with Applications for Satellite Control Systems Book in PDF, ePub and Kindle

In this thesis, model based fault detection, isolation, and estimation problem in several classes of nonlinear systems is studied using sliding mode and learning approaches. First, a fault diagnosis scheme using a bank of repetitive learning observers is presented. The diagnostic observers are established in a generalized observer scheme, and the observer inputs are repetitively updated using the output estimation error in a proportional-integral structure. Next, a framework for robust fault diagnosis using sliding mode and learning approaches is proposed to deal with various types of faults in a class of nonlinear systems with triangular input form. In the designed diagnostic observers, first order and second order sliding modes are used respectively, to achieve robust state estimation in the presence of uncertainties, and additional online estimators are established to characterize the faults. In order to guarantee that the sliding mode is able to distinguish the system uncertainties from the faults, two iterative adaptive laws are used to update the sliding mode switching gains. Moreover, different online fault estimators are developed using neural state space models, iterative learning algorithms, and wavelet networks. Another class of nonlinear systems where an unmeasurable part of state can be described as a nonlinear function of the output and its derivatives is considered next. Accordingly, a class of fault diagnosis schemes using high order sliding mode differentiators (HOSMDs) and online estimators are proposed, where neural adaptive estimators and iterative neuron PID estimators are designed. Additionally, a fault diagnosis scheme using HOSMDs and neural networks based uncertainty observers is designed in order to achieve a better performance in robust fault detection. If the uncertainties can be accurately estimated, the generated diagnostic residual is more sensitive to the onset of faults. Finally, a fault diagnosis scheme using Takagi-Sugeno (TS) fuzzy models, neural networks, and sliding mode is developed. The availability of TS fuzzy models makes this fault diagnosis scheme applicable to a wider class of nonlinear systems. The proposed fault diagnosis schemes are applied to several types of satellite control systems, and the simulation results demonstrate their performance.


Fault Diagnosis of Nonlinear Systems Using a Hybrid Approach

Fault Diagnosis of Nonlinear Systems Using a Hybrid Approach
Author: Ehsan Sobhani-Tehrani
Publisher: Springer
Total Pages: 268
Release: 2009-08-14
Genre: Technology & Engineering
ISBN: 9780387929088

Download Fault Diagnosis of Nonlinear Systems Using a Hybrid Approach Book in PDF, ePub and Kindle

Theincreasingcomplexityofspacevehiclessuchassatellites,andthecostreduction measures that have affected satellite operators are increasingly driving the need for more autonomy in satellite diagnostics and control systems. Current methods for detecting and correcting anomalies onboard the spacecraft as well as on the ground are primarily manual and labor intensive, and therefore, tend to be slow. Operators inspect telemetry data to determine the current satellite health. They use various statisticaltechniques andmodels,buttheanalysisandevaluation ofthelargevolume of data still require extensive human intervention and expertise that is prone to error. Furthermore, for spacecraft and most of these satellites, there can be potentially unduly long delays in round-trip communications between the ground station and the satellite. In this context, it is desirable to have onboard fault-diagnosis system that is capable of detecting, isolating, identifying or classifying faults in the system withouttheinvolvementandinterventionofoperators.Towardthisend,theprinciple goal here is to improve the ef?ciency, accuracy, and reliability of the trend analysis and diagnostics techniques through utilization of intelligent-based and hybrid-based methodologies.


Fault Detection and Fault-Tolerant Control Using Sliding Modes

Fault Detection and Fault-Tolerant Control Using Sliding Modes
Author: Halim Alwi
Publisher: Springer Science & Business Media
Total Pages: 358
Release: 2011-06-07
Genre: Technology & Engineering
ISBN: 0857296507

Download Fault Detection and Fault-Tolerant Control Using Sliding Modes Book in PDF, ePub and Kindle

Fault Detection and Fault-tolerant Control Using Sliding Modes is the first text dedicated to showing the latest developments in the use of sliding-mode concepts for fault detection and isolation (FDI) and fault-tolerant control in dynamical engineering systems. It begins with an introduction to the basic concepts of sliding modes to provide a background to the field. This is followed by chapters that describe the use and design of sliding-mode observers for FDI using robust fault reconstruction. The development of a class of sliding-mode observers is described from first principles through to the latest schemes that circumvent minimum-phase and relative-degree conditions. Recent developments have shown that the field of fault tolerant control is a natural application of the well-known robustness properties of sliding-mode control. A family of sliding-mode control designs incorporating control allocation, which can deal with actuator failures directly by exploiting redundancy, is presented. Various realistic case studies, specifically highlighting aircraft systems and including results from the implementation of these designs on a motion flight simulator, are described. A reference and guide for researchers in fault detection and fault-tolerant control, this book will also be of interest to graduate students working with nonlinear systems and with sliding modes in particular. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.


Robust Observer-Based Fault Diagnosis for Nonlinear Systems Using MATLAB®

Robust Observer-Based Fault Diagnosis for Nonlinear Systems Using MATLAB®
Author: Jian Zhang
Publisher: Springer
Total Pages: 231
Release: 2016-05-27
Genre: Technology & Engineering
ISBN: 3319323245

Download Robust Observer-Based Fault Diagnosis for Nonlinear Systems Using MATLAB® Book in PDF, ePub and Kindle

This book introduces several observer-based methods, including: • the sliding-mode observer • the adaptive observer • the unknown-input observer and • the descriptor observer method for the problem of fault detection, isolation and estimation, allowing readers to compare and contrast the different approaches. The authors present basic material on Lyapunov stability theory, H¥ control theory, sliding-mode control theory and linear matrix inequality problems in a self-contained and step-by-step manner. Detailed and rigorous mathematical proofs are provided for all the results developed in the text so that readers can quickly gain a good understanding of the material. MATLAB® and Simulink® codes for all the examples, which can be downloaded from http://extras.springer.com, enable students to follow the methods and illustrative examples easily. The systems used in the examples make the book highly relevant to real-world problems in industrial control engineering and include a seventh-order aircraft model, a single-link flexible joint robot arm and a satellite controller. To help readers quickly find the information they need and to improve readability, the individual chapters are written so as to be semi-independent of each other. Robust Oberserver-Based Fault Diagnosis for Nonlinear Systems Using MATLAB® is of interest to process, aerospace, robotics and control engineers, engineering students and researchers with a control engineering background.


Fault Detection and Diagnosis in Nonlinear Systems

Fault Detection and Diagnosis in Nonlinear Systems
Author: Rafael Martinez-Guerra
Publisher: Springer
Total Pages: 143
Release: 2013-11-19
Genre: Technology & Engineering
ISBN: 3319030477

Download Fault Detection and Diagnosis in Nonlinear Systems Book in PDF, ePub and Kindle

The high reliability required in industrial processes has created the necessity of detecting abnormal conditions, called faults, while processes are operating. The term fault generically refers to any type of process degradation, or degradation in equipment performance because of changes in the process's physical characteristics, process inputs or environmental conditions. This book is about the fundamentals of fault detection and diagnosis in a variety of nonlinear systems which are represented by ordinary differential equations. The fault detection problem is approached from a differential algebraic viewpoint, using residual generators based upon high-gain nonlinear auxiliary systems (‘observers’). A prominent role is played by the type of mathematical tools that will be used, requiring knowledge of differential algebra and differential equations. Specific theorems tailored to the needs of the problem-solving procedures are developed and proved. Applications to real-world problems, both with constant and time-varying faults, are made throughout the book and include electromechanical positioning systems, the Continuous Stirred Tank Reactor (CSTR), bioreactor models and belt drive systems, to name but a few.


Intelligent Computing Methodologies

Intelligent Computing Methodologies
Author: De-Shuang Huang
Publisher: Springer
Total Pages: 833
Release: 2019-07-30
Genre: Computers
ISBN: 3030267660

Download Intelligent Computing Methodologies Book in PDF, ePub and Kindle

This two-volume set of LNCS 11643 and LNCS 11644 constitutes - in conjunction with the volume LNAI 11645 - the refereed proceedings of the 15th International Conference on Intelligent Computing, ICIC 2019, held in Nanchang, China, in August 2019. The 217 full papers of the three proceedings volumes were carefully reviewed and selected from 609 submissions. The ICIC theme unifies the picture of contemporary intelligent computing techniques as an integral concept that highlights the trends in advanced computational intelligence and bridges theoretical research with applications. The theme for this conference is “Advanced Intelligent Computing Methodologies and Applications.” Papers related to this theme are especially solicited, including theories, methodologies, and applications in science and technology.


Fault-Tolerant Attitude Control of Spacecraft

Fault-Tolerant Attitude Control of Spacecraft
Author: Qinglei Hu
Publisher: Elsevier
Total Pages: 306
Release: 2021-06-09
Genre: Technology & Engineering
ISBN: 0323901247

Download Fault-Tolerant Attitude Control of Spacecraft Book in PDF, ePub and Kindle

Fault-Tolerant Attitude Control of Spacecraft presents the fundamentals of spacecraft fault-tolerant attitude control systems, along with the most recent research and advanced, nonlinear control techniques. This book gives researchers a self-contained guide to the complex tasks of envisaging, designing, implementing and experimenting by presenting designs for integrated modeling, dynamics, fault-tolerant attitude control, and fault reconstruction for spacecraft. Specifically, the book gives a full literature review and presents preliminaries and mathematical models, robust fault-tolerant attitude control, fault-tolerant attitude control with actuator saturation, velocity-free fault tolerant attitude control, finite-time fault-tolerant attitude tracking control, and active fault-tolerant attitude contour. Finally, the book looks at the future of this interesting topic, offering readers a one-stop solution for those working on fault-tolerant attitude control for spacecraft. Presents the fundamentals of fault-tolerant attitude control systems for spacecraft in one practical solution Gives the latest research and thinking on nonlinear attitude control, fault tolerant control, and reliable attitude control Brings together concepts in fault control theory, fault diagnosis, and attitude control for spacecraft Covers advances in theory, technological aspects, and applications in spacecraft Presents detailed numerical and simulation results to assist engineers Offers a clear, systematic reference on fault-tolerant control and attitude control for spacecraft


Advanced methods for fault diagnosis and fault-tolerant control

Advanced methods for fault diagnosis and fault-tolerant control
Author: Steven X. Ding
Publisher: Springer Nature
Total Pages: 664
Release: 2020-11-24
Genre: Technology & Engineering
ISBN: 3662620049

Download Advanced methods for fault diagnosis and fault-tolerant control Book in PDF, ePub and Kindle

The major objective of this book is to introduce advanced design and (online) optimization methods for fault diagnosis and fault-tolerant control from different aspects. Under the aspect of system types, fault diagnosis and fault-tolerant issues are dealt with for linear time-invariant and time-varying systems as well as for nonlinear and distributed (including networked) systems. From the methodological point of view, both model-based and data-driven schemes are investigated.To allow for a self-contained study and enable an easy implementation in real applications, the necessary knowledge as well as tools in mathematics and control theory are included in this book. The main results with the fault diagnosis and fault-tolerant schemes are presented in form of algorithms and demonstrated by means of benchmark case studies. The intended audience of this book are process and control engineers, engineering students and researchers with control engineering background.


Fault Diagnosis for Linear Discrete Time-Varying Systems and Its Applications

Fault Diagnosis for Linear Discrete Time-Varying Systems and Its Applications
Author: Maiying Zhong
Publisher: Springer Nature
Total Pages: 407
Release: 2022-11-01
Genre: Technology & Engineering
ISBN: 9811954380

Download Fault Diagnosis for Linear Discrete Time-Varying Systems and Its Applications Book in PDF, ePub and Kindle

This book focuses on fault diagnosis for linear discrete time-varying (LDTV) systems and its applications in modern engineering processes, with more weighting placed on the development of theory and methodologies. A comprehensive and systematic study on fault diagnosis for LDTV systems is provided, covering H∞-optimization-based fault diagnosis, H∞-filtering-based fault diagnosis, parity space-based fault diagnosis, Krein space technique-aided fault detection and fault estimation, and their typical applications in linear/nonlinear processes such as satellite attitude control systems and INS/GPS systems. This book benefits researchers, engineers, and graduate students in the fields of control engineering, electrical and electronic engineering, instrumentation science, and optoelectronic engineering.


Robust Observer Based Fault Diagnosis for Nonlinear Systems

Robust Observer Based Fault Diagnosis for Nonlinear Systems
Author: Jian Zhang
Publisher:
Total Pages: 176
Release: 2013
Genre: Electric fault location
ISBN:

Download Robust Observer Based Fault Diagnosis for Nonlinear Systems Book in PDF, ePub and Kindle

The field of observer based fault diagnosis for nonlinear systems has become an important topic of research in the control community over the last three decades. In this thesis, the issues of robust fault detection, isolation and estimation of actuator faults and sensor faults for Lipschitz nonlinear systems has been studied using sliding mode, adaptive and descriptor system approaches. The problem of estimating actuator faults is initially discussed. The sliding mode observer (SMO) is constructed directly based on the uncertain nonlinear system. The fault is reconstructed using the concept of equivalent output injection. Sensor faults are treated as actuator faults by using integral observer based approach and then the problem of sensor fault diagnosis, including detection, isolation and estimation is studied. The proposed scheme has the ability of successfully diagnosing incipient sensor faults in the presence of system uncertainties. The results are then extended to simultaneously estimate actuator faults and sensor faults using SMOs, adaptive observers (AO) and descriptor system approaches. H_ filtering is integrated into the observers to ensure that the fault estimation error as well as the state estimation error are less than a prescribed performance level. The existence of the proposed fault estimators and their stability analysis are carried out in terms of LMIs. It has been observed that when the Lipschitz constant is unknown or too large, it may fail to find feasible solutions for observers. In order to deal with this situation, adaptation laws are used to generate an additional control input to the nonlinear system. The additional control input can eliminate the effect of Lipschitz constant on the solvability of LMIs. The effectiveness of various methods proposed in this research has been demonstrated using several numerical and practical examples. The simulation results demonstrate that the proposed methods can achieve the prescribed performance requirements.