Fault Diagnosis And Fault Tolerant Control Of Dfig Based Wind Turbine System PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fault Diagnosis And Fault Tolerant Control Of Dfig Based Wind Turbine System PDF full book. Access full book title Fault Diagnosis And Fault Tolerant Control Of Dfig Based Wind Turbine System.

Fault Diagnosis and Sustainable Control of Wind Turbines

Fault Diagnosis and Sustainable Control of Wind Turbines
Author: Silvio Simani
Publisher: Butterworth-Heinemann
Total Pages: 230
Release: 2018-01-02
Genre: Technology & Engineering
ISBN: 0128129859

Download Fault Diagnosis and Sustainable Control of Wind Turbines Book in PDF, ePub and Kindle

Fault Diagnosis and Sustainable Control of Wind Turbines: Robust Data-Driven and Model-Based Strategies discusses the development of reliable and robust fault diagnosis and fault-tolerant (‘sustainable’) control schemes by means of data-driven and model-based approaches. These strategies are able to cope with unknown nonlinear systems and noisy measurements. The book also discusses simpler solutions relying on data-driven and model-based methodologies, which are key when on-line implementations are considered for the proposed schemes. The book targets both professional engineers working in industry and researchers in academic and scientific institutions. In order to improve the safety, reliability and efficiency of wind turbine systems, thus avoiding expensive unplanned maintenance, the accommodation of faults in their early occurrence is fundamental. To highlight the potential of the proposed methods in real applications, hardware–in–the–loop test facilities (representing realistic wind turbine systems) are considered to analyze the digital implementation of the designed solutions. The achieved results show that the developed schemes are able to maintain the desired performances, thus validating their reliability and viability in real-time implementations. Different groups of readers—ranging from industrial engineers wishing to gain insight into the applications' potential of new fault diagnosis and sustainable control methods, to the academic control community looking for new problems to tackle—will find much to learn from this work. Provides wind turbine models with varying complexity, as well as the solutions proposed and developed by the authors Addresses in detail the design, development and realistic implementation of fault diagnosis and fault tolerant control strategies for wind turbine systems Addresses the development of sustainable control solutions that, in general, do not require the introduction of further or redundant measurements Proposes active fault tolerant ('sustainable') solutions that are able to maintain the wind turbine working conditions with gracefully degraded performance before required maintenance can occur Presents full coverage of the diagnosis and fault tolerant control problem, starting from the modeling and identification and finishing with diagnosis and fault tolerant control approaches Provides MATLAB and Simulink codes for the solutions proposed


Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems

Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems
Author: Monia Ben Khader Bouzid
Publisher: John Wiley & Sons
Total Pages: 188
Release: 2023-09-01
Genre: Technology & Engineering
ISBN: 1394236433

Download Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems Book in PDF, ePub and Kindle

Wind energy conversion systems are subject to many different types of faults and therefore fault detection is highly important to ensure reliability and safety. Monitoring systems can help to detect faults before they result in downtime. This book presents efficient methods used to detect electrical and mechanical faults based on electrical signals occurring in the different components of a wind energy conversion system. For example, in a small and high power synchronous generator and multi-phase generator, in the diode bridge rectifier, the gearbox and the sensors. This book also presents a method for keeping the frequency and voltage of the power grid within an allowable range while ensuring the continuity of power supply in the event of a grid fault. Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems presents original results obtained from a variety of research. It will not only be useful as a guideline for the conception of more robust wind turbines systems, but also for engineers monitoring wind turbines and researchers


Diagnosis and Fault-tolerant Control Volume 2

Diagnosis and Fault-tolerant Control Volume 2
Author: Vicenc Puig
Publisher: John Wiley & Sons
Total Pages: 290
Release: 2021-11-30
Genre: Computers
ISBN: 1119882346

Download Diagnosis and Fault-tolerant Control Volume 2 Book in PDF, ePub and Kindle

This book presents recent advances in fault diagnosis and fault-tolerant control of dynamic processes. Its impetus derives from the need for an overview of the challenges of the fault diagnosis technique and sustainable control, especially for those demanding systems that require reliability, availability, maintainability, and safety to ensure efficient operations. Moreover, the need for a high degree of tolerance with respect to possible faults represents a further key point, primarily for complex systems, as modeling and control are inherently challenging, and maintenance is both expensive and safety-critical. Diagnosis and Fault-tolerant Control 2 also presents and compares different fault diagnosis and fault-tolerant schemes, using well established, innovative strategies for modeling the behavior of the dynamic process under investigation. An updated treatise of diagnosis and fault-tolerant control is addressed with the use of essential and advanced methods including signal-based, model-based and data-driven techniques. Another key feature is the application of these methods for dealing with robustness and reliability.


Diagnosis and Fault-tolerant Control Volume 2

Diagnosis and Fault-tolerant Control Volume 2
Author: Vicenc Puig
Publisher: John Wiley & Sons
Total Pages: 290
Release: 2021-12-29
Genre: Computers
ISBN: 1789450594

Download Diagnosis and Fault-tolerant Control Volume 2 Book in PDF, ePub and Kindle

This book presents recent advances in fault diagnosis and fault-tolerant control of dynamic processes. Its impetus derives from the need for an overview of the challenges of the fault diagnosis technique and sustainable control, especially for those demanding systems that require reliability, availability, maintainability, and safety to ensure efficient operations. Moreover, the need for a high degree of tolerance with respect to possible faults represents a further key point, primarily for complex systems, as modeling and control are inherently challenging, and maintenance is both expensive and safety-critical. Diagnosis and Fault-tolerant Control 2 also presents and compares different fault diagnosis and fault-tolerant schemes, using well established, innovative strategies for modeling the behavior of the dynamic process under investigation. An updated treatise of diagnosis and fault-tolerant control is addressed with the use of essential and advanced methods including signal-based, model-based and data-driven techniques. Another key feature is the application of these methods for dealing with robustness and reliability.


Contribution to Adaptative Sliding Mode, Fault Tolerant Control and Control Allocation of Wind Turbine System

Contribution to Adaptative Sliding Mode, Fault Tolerant Control and Control Allocation of Wind Turbine System
Author: Xinyi Liu
Publisher:
Total Pages: 0
Release: 2016
Genre:
ISBN:

Download Contribution to Adaptative Sliding Mode, Fault Tolerant Control and Control Allocation of Wind Turbine System Book in PDF, ePub and Kindle

The main challenges for the deployment of wind energy conversion systems (WECS) are to maximize the amount of good quality electrical power extracted from wind energy over a significantly wide range of weather conditions and minimize both manufacturing and maintenance costs. Wind turbine's efficiency is highly dependent on environmental disturbances and varying parameters for operating conditions, such as wind speed, pitch angle, tip-speed ratio, sensitive resistor and inductance. Uncertainties on the system are hard to model exactly while it affects the stability of the system. In order to ensure an optimal operating condition, with unknown perturbations, adaptive control can play an important role. On the other hand, a Fault Tolerant Control (FTC) with control allocation that is able to maintain the WECS connected after the occurrence of certain faults can avoid major economic losses. The thesis work concerns the establishment of an adaptive control and fault diagnosis and tolerant control of WECS. After a literature review, the contributions of the thesis are:In the first part of the thesis, a nonlinear uncertain model of the wind energy conversion system with a doubly fed induction generator (DFIG) is proposed. A novel Lyapunov-based adaptive Sliding Mode (HOSM) controller is designed to optimize the generated power.In the second part, a new output integral sliding mode methodology for fault tolerant control with control allocation of linear time varying systems is presented. Then, this methodology has been applied in order to force the wind turbine speed to its optimal value the presence of faults in the actuator.


Wind Turbine Control and Monitoring

Wind Turbine Control and Monitoring
Author: Ningsu Luo
Publisher: Springer
Total Pages: 462
Release: 2014-08-30
Genre: Technology & Engineering
ISBN: 3319084135

Download Wind Turbine Control and Monitoring Book in PDF, ePub and Kindle

Maximizing reader insights into the latest technical developments and trends involving wind turbine control and monitoring, fault diagnosis, and wind power systems, ‘Wind Turbine Control and Monitoring’ presents an accessible and straightforward introduction to wind turbines, but also includes an in-depth analysis incorporating illustrations, tables and examples on how to use wind turbine modeling and simulation software. Featuring analysis from leading experts and researchers in the field, the book provides new understanding, methodologies and algorithms of control and monitoring, computer tools for modeling and simulation, and advances the current state-of-the-art on wind turbine monitoring and fault diagnosis; power converter systems; and cooperative & fault-tolerant control systems for maximizing the wind power generation and reducing the maintenance cost. This book is primarily intended for researchers in the field of wind turbines, control, mechatronics and energy; postgraduates in the field of mechanical and electrical engineering; and graduate and senior undergraduate students in engineering wishing to expand their knowledge of wind energy systems. The book will also interest practicing engineers dealing with wind technology who will benefit from the comprehensive coverage of the theoretic control topics, the simplicity of the models and the use of commonly available control algorithms and monitoring techniques.


Robust Integration of Model-Based Fault Estimation and Fault-Tolerant Control

Robust Integration of Model-Based Fault Estimation and Fault-Tolerant Control
Author: Jianglin Lan
Publisher: Springer Nature
Total Pages: 275
Release: 2020-12-11
Genre: Technology & Engineering
ISBN: 3030587606

Download Robust Integration of Model-Based Fault Estimation and Fault-Tolerant Control Book in PDF, ePub and Kindle

Robust Integration of Model-Based Fault Estimation and Fault-Tolerant Control is a systematic examination of methods used to overcome the inevitable system uncertainties arising when a fault estimation (FE) function and a fault-tolerant controller interact as they are employed together to compensate for system faults and maintain robustly acceptable system performance. It covers the important subject of robust integration of FE and FTC with the aim of guaranteeing closed-loop stability. The reader’s understanding of the theory is supported by the extensive use of tutorial examples, including some MATLAB®-based material available from the Springer website and by industrial-applications-based material. The text is structured into three parts: Part I examines the basic concepts of FE and FTC, providing extensive insight into the importance of and challenges involved in their integration; Part II describes five effective strategies for the integration of FE and FTC: sequential, iterative, simultaneous, adaptive-decoupling, and robust decoupling; and Part III begins to extend the proposed strategies to nonlinear and large-scale systems and covers their application in the fields of renewable energy, robotics and networked systems. The strategies presented are applicable to a broad range of control problems, because in the absence of faults the FE-based FTC naturally reverts to conventional observer-based control. The book is a useful resource for researchers and engineers working in the area of fault-tolerant control systems, and supplementary material for a graduate- or postgraduate-level course on fault diagnosis and FTC. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.


Structural Control and Fault Detection of Wind Turbine Systems

Structural Control and Fault Detection of Wind Turbine Systems
Author: Hamid Reza Karimi
Publisher: Energy Engineering
Total Pages: 317
Release: 2018-05
Genre: Technology & Engineering
ISBN: 1785613944

Download Structural Control and Fault Detection of Wind Turbine Systems Book in PDF, ePub and Kindle

With the rapid growth of wind energy worldwide, challenges in the operation and control of wind turbine systems are becoming increasingly important. This book conveys up to date theoretical and practical techniques applicable to the control of wind turbine systems.