Fabrication And Characterisation Of High Q Nanomechanical Resonators From Highly Stressed 3c Sic PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fabrication And Characterisation Of High Q Nanomechanical Resonators From Highly Stressed 3c Sic PDF full book. Access full book title Fabrication And Characterisation Of High Q Nanomechanical Resonators From Highly Stressed 3c Sic.

Fabrication and Characterization of Nanomechanical Resonators as Highly Sensitive Mass Sensors

Fabrication and Characterization of Nanomechanical Resonators as Highly Sensitive Mass Sensors
Author: Vahid Qaradaghi
Publisher:
Total Pages:
Release: 2018
Genre: Carbon nanotubes
ISBN:

Download Fabrication and Characterization of Nanomechanical Resonators as Highly Sensitive Mass Sensors Book in PDF, ePub and Kindle

Nanoelectromechanical (NEM) resonators have been used to detect masses of organic or inorganic particles in nanoscale or even atomic level. A reduction in the resonator mass can increase its mass sensitivity (frequency shift per loaded mass). However, the operation of most small resonators is restricted to vacuum or air since operation in liquid sharply decreases their quality factor (Q) due to the excessive damping resulting from liquid viscosity. Q factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is, and higher Q indicates a lower rate of energy loss relative to the stored energy of the resonator. Typically, large size resonators such as Quartz Crystal Microbalance (QCM) are used for mass detection in liquid to preserve a high Q factor that determines the resolution of measurements. However, as it was mentioned earlier, such resonators cannot offer high sensitivity due to their relatively large size and mass. Therefore, highly-sensitive resonators capable of real-time mass measurement with high Q both in air and liquid currently do not exist. Thermal piezoresistive disk resonator surface merely slides alongside the solid-liquid interface in the rotational mode, as opposed to paddling against the surrounding liquid offering high Q. In this dissertation, thermal-piezoresistive disk resonators with much smaller dimensions in the deep submicron range have been fabricated using electron beam lithography (EBL), and the effect of scaling on mass sensitivity, power consumption and quality factor (Q) is investigated. Disk resonators with diameter ranging from 2μm to 20μm with thermal actuator beams as narrow as 35nm have been fabricated via electron beam lithography. Mass sensitivity of disk resonators was characterized in air by formation of a self-assembled monolayer of hexa-methyl-disilazane (HMDS) on the surfaces. Frequency shifts as high as 318 Hz were measured for a calculated deposited mass of one attogram using a 2μm diameter disk resonator resonating at 221MHz. Operation in liquid was characterized by exposing a 20μm disk resonator to a 10mM solution of mercaptohexanol (MCH) diluted in ethyl alcohol (ethanol). For this experiment, frequency shift of 20 kHz for 2.8 pg of added MCH mass was obtained. In conventional rotational mode disk resonators, as the dimensions scale down, the mechanical losses including anchor loss increase. This adversely affects the detection of the resonance mode at higher frequencies. To alleviate this issue, donut-shaped resonators have been proposed potentially offering higher Qs while resonating at higher frequencies. Mass sensitivity of donut resonators with different sizes has been investigated with deposited 10nm gold nanoparticles (AuNPs) as added mass showing mass sensitivity of 36 Hz/attogram (712 Hz/AuNp) in air characterization. Due to the reduction of the surface area, the probability of adsorption of molecules or particulates of interest onto the NEM resonator surfaces diminishes. To address this issue, forests of multiwall carbon nanotubes (MWCNTs) have been used to enhance the effective surface area, which allows detection of much lower concentrations of analytes. Using this approach, average effective surface area enhancement as high as 9 times for organic and inorganic nanoparticles was demonstrated.


Advanced Nanomaterials for Inexpensive Gas Microsensors

Advanced Nanomaterials for Inexpensive Gas Microsensors
Author: Eduard Llobet Valero
Publisher: Elsevier
Total Pages: 366
Release: 2019-11-13
Genre: Technology & Engineering
ISBN: 0128148284

Download Advanced Nanomaterials for Inexpensive Gas Microsensors Book in PDF, ePub and Kindle

Advanced Nanomaterials for Inexpensive Gas Microsensors: Synthesis, Integration and Applications presents full coverage in the area of gas sensing nanomaterials, from materials, transducers and applications, to the latest results and future direction. Experts present work on metal oxides, carbon-based and hybrid materials, fabrication and application. The book brings together three major themes, including synthesis, functionalization and the characterization of advanced nanomaterials, all emphasizing synthesis techniques that ease the integration of nanomaterials in transducers. Chapters encompass a wide spectrum of sensing technologies, including advanced nanomaterials (metal oxides, carbon materials and graphene) and organic molecular materials and atomic layers (MoS2). The book's authors examine the coupling of sensitive nanomaterials to different types of transducer elements and their applications, including direct growth and additive fabrication techniques as a way to obtain inexpensive gas microsensors, principal transduction schemes, and advanced operating methods. Presents technological solutions and applications of gas sensors in varied areas of chemistry, physics, material science and engineering Examines advanced operating methods (e.g., temperature modulation, self-heating, light-activated response, noise methods) to enhance stability, sensitivity, selectivity and reduce power consumption Provides a critical review of current applications and their expected future evolution, demonstrating the most promising approaches and future expectations in the development of inexpensive gas micro- and nanosensors


MEMS

MEMS
Author: Mohamed Gad-el-Hak
Publisher: CRC Press
Total Pages: 576
Release: 2005-11-29
Genre: Technology & Engineering
ISBN: 1420036556

Download MEMS Book in PDF, ePub and Kindle

As our knowledge of microelectromechanical systems (MEMS) continues to grow, so does The MEMS Handbook. The field has changed so much that this Second Edition is now available in three volumes. Individually, each volume provides focused, authoritative treatment of specific areas of interest. Together, they comprise the most comprehensive collection


Fundamentals of Nanomechanical Resonators

Fundamentals of Nanomechanical Resonators
Author: Silvan Schmid
Publisher: Springer
Total Pages: 183
Release: 2016-06-21
Genre: Technology & Engineering
ISBN: 3319286919

Download Fundamentals of Nanomechanical Resonators Book in PDF, ePub and Kindle

This authoritative book introduces and summarizes the latest models and skills required to design and fabricate nanomechanical resonators with a focus on nanomechanical sensing. It also establishes the theoretical foundation for courses on micro and nanomechanics. This book takes an applied approach to nanomechanics, providing a complete set of mechanical models, including strings and membrane resonators. Also discussed are quality factors, noise issues, transduction techniques, nanomechanical sensing, fabrication techniques, and applications for all common nanomechanical resonator types. It is an ideal book for students and researchers working with micro and nanomechanical resonators.


SiC based Miniaturized Devices

SiC based Miniaturized Devices
Author: Stephen Edward Saddow
Publisher: MDPI
Total Pages: 170
Release: 2020-06-18
Genre: Technology & Engineering
ISBN: 3039360108

Download SiC based Miniaturized Devices Book in PDF, ePub and Kindle

MEMS devices are found in many of today’s electronic devices and systems, from air-bag sensors in cars to smart phones, embedded systems, etc. Increasingly, the reduction in dimensions has led to nanometer-scale devices, called NEMS. The plethora of applications on the commercial market speaks for itself, and especially for the highly precise manufacturing of silicon-based MEMS and NEMS. While this is a tremendous achievement, silicon as a material has some drawbacks, mainly in the area of mechanical fatigue and thermal properties. Silicon carbide (SiC), a well-known wide-bandgap semiconductor whose adoption in commercial products is experiening exponential growth, especially in the power electronics arena. While SiC MEMS have been around for decades, in this Special Issue we seek to capture both an overview of the devices that have been demonstrated to date, as well as bring new technologies and progress in the MEMS processing area to the forefront. Thus, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on: (1) novel designs, fabrication, control, and modeling of SiC MEMS and NEMS based on all kinds of actuation mechanisms; and (2) new developments in applying SiC MEMS and NEMS in consumer electronics, optical communications, industry, medicine, agriculture, space, and defense.


MEMS Materials and Processes Handbook

MEMS Materials and Processes Handbook
Author: Reza Ghodssi
Publisher: Springer Science & Business Media
Total Pages: 1211
Release: 2011-03-18
Genre: Technology & Engineering
ISBN: 0387473181

Download MEMS Materials and Processes Handbook Book in PDF, ePub and Kindle

MEMs Materials and Processes Handbook" is a comprehensive reference for researchers searching for new materials, properties of known materials, or specific processes available for MEMS fabrication. The content is separated into distinct sections on "Materials" and "Processes". The extensive Material Selection Guide" and a "Material Database" guides the reader through the selection of appropriate materials for the required task at hand. The "Processes" section of the book is organized as a catalog of various microfabrication processes, each with a brief introduction to the technology, as well as examples of common uses in MEMs.


Glassy Materials Based Microdevices

Glassy Materials Based Microdevices
Author: Giancarlo C. Righini
Publisher: MDPI
Total Pages: 284
Release: 2019-02-28
Genre: Technology & Engineering
ISBN: 3038976180

Download Glassy Materials Based Microdevices Book in PDF, ePub and Kindle

Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome.


High Sensitivity Magnetometers

High Sensitivity Magnetometers
Author: Asaf Grosz
Publisher: Springer
Total Pages: 576
Release: 2016-09-20
Genre: Technology & Engineering
ISBN: 3319340700

Download High Sensitivity Magnetometers Book in PDF, ePub and Kindle

This book gathers, for the first time, an overview of nearly all of the magnetic sensors that exist today. The book is offering the readers a thorough and comprehensive knowledge from basics to state-of-the-art and is therefore suitable for both beginners and experts. From the more common and popular AMR magnetometers and up to the recently developed NV center magnetometers, each chapter is describing a specific type of sensor and providing all the information that is necessary to understand the magnetometer behavior including theoretical background, noise model, materials, electronics, design and fabrication techniques, etc.


Silicon Carbide Micro Electromechanical Systems for Harsh Environments

Silicon Carbide Micro Electromechanical Systems for Harsh Environments
Author: Rebecca Cheung
Publisher: Imperial College Press
Total Pages: 193
Release: 2006
Genre: Technology & Engineering
ISBN: 1860949096

Download Silicon Carbide Micro Electromechanical Systems for Harsh Environments Book in PDF, ePub and Kindle

This unique book describes the science and technology of silicon carbide (SiC) microelectromechanical systems (MEMS), from the creation of SiC material to the formation of final system, through various expert contributions by several leading key figures in the field. The book contains high-quality up-to-date scientific information concerning SiC MEMS for harsh environments summarized concisely for students, academics, engineers and researchers in the field of SiC MEMS. This is the only book that addresses in a comprehensive manner the main advantages of SiC as a MEMS material for applications in high temperature and harsh environments, as well as approaches to the relevant technologies, with a view progressing towards the final product. Sample Chapter(s). Chapter 1: Introduction to Silicon Carbide (SIC) Microelectromechanical Systems (MEMS) (800 KB). Contents: Introduction to Silicon Carbide (SiC) Microelectromechanical Systems (MEMS) (R Cheung); Deposition Techniques for SiC MEMS (C A Zorman et al.); Review of Issues Pertaining to the Development of Contacts to Silicon Carbide: 1996OCo2002 (L M Porter & F A Mohammad); Dry Etching of SiC (S J Pearton); Design, Performance and Applications of SiC MEMS (S Zappe). Readership: Academic researchers in MEMS and industrial engineers engaged in SiC MEMS research."