Extraction Of Uranium From Seawater PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Extraction Of Uranium From Seawater PDF full book. Access full book title Extraction Of Uranium From Seawater.

Enhancement of Extraction of Uranium from Seawater

Enhancement of Extraction of Uranium from Seawater
Author:
Publisher:
Total Pages: 21
Release: 2016
Genre:
ISBN:

Download Enhancement of Extraction of Uranium from Seawater Book in PDF, ePub and Kindle

Even at a concentration of 3 [mu]g/L, the world's oceans contain a thousand times more uranium than currently know terrestrial sources. In order to take advantage of this stockpile, methods and materials must be developed to extract it efficiently, a difficult task considering the very low concentration of the element and the competition for extraction by other atoms in seawater such as sodium, calcium, and vanadium. The majority of current research on methods to extract uranium from seawater are vertical explorations of the grafting of amidoxime ligand which was originally discovered and promoted by Japanese studies in the late 1980s. Our study expands on this research horizontally by exploring the effectiveness of novel uranium extraction ligands grafted to the surface of polymer substrates using radiation. Through this expansion, a greater understanding of uranium binding chemistry and radiation grafting effects on polymers has been obtained. While amidoxime-functionalized fabrics have been shown to have the greatest extraction efficiency so far, they suffer from an extensive chemical processing step which involves treatment with powerful basic solutions. Not only does this add to the chemical waste produced in the extraction process and add to the method's complexity, but it also significantly impacts the regenerability of the amidoxime fabric. The approach of this project has been to utilize alternative, commercially available monomers capable of extracting uranium and containing a carbon-carbon double bond to allow it to be grafted using radiation, specifically phosphate, oxalate, and azo monomers. The use of commercially available monomers and radiation grafting with electron beam or gamma irradiation will allow for an easily scalable fabrication process once the technology has been optimized. The need to develop a cheap and reliable method for extracting uranium from seawater is extremely valuable to energy independence and will extend the quantity of uranium available to the nuclear power industry far into the future. The development of this technology will also promote science in relation to the extraction of other elements from seawater which could expand the known stockpiles of other highly desirable materials.


Enhancement of Extraction of Uranium from Seawater - Final Report

Enhancement of Extraction of Uranium from Seawater - Final Report
Author:
Publisher:
Total Pages: 20
Release: 2016
Genre:
ISBN:

Download Enhancement of Extraction of Uranium from Seawater - Final Report Book in PDF, ePub and Kindle

Even at a concentration of 3 [mu]g/L, the world's oceans contain a thousand times more uranium than currently know terrestrial sources. In order to take advantage of this stockpile, methods and materials must be developed to extract it efficiently, a difficult task considering the very low concentration of the element and the competition for extraction by other atoms in seawater such as sodium, calcium, and vanadium. The majority of current research on methods to extract uranium from seawater are vertical explorations of the grafting of amidoxime ligand which was originally discovered and promoted by Japanese studies in the late 1980s. Our study expands on this research horizontally by exploring the effectiveness of novel uranium extraction ligands grafted to the surface of polymer substrates using radiation. Through this expansion, a greater understanding of uranium binding chemistry and radiation grafting effects on polymers has been obtained. While amidoxime-functionalized fabrics have been shown to have the greatest extraction efficiency so far, they suffer from an extensive chemical processing step which involves treatment with powerful basic solutions. Not only does this add to the chemical waste produced in the extraction process and add to the method's complexity, but it also significantly impacts the regenerability of the amidoxime fabric. The approach of this project has been to utilize alternative, commercially available monomers capable of extracting uranium and containing a carbon-carbon double bond to allow it to be grafted using radiation, specifically phosphate, oxalate, and azo monomers. The use of commercially available monomers and radiation grafting with electron beam or gamma irradiation will allow for an easily scalable fabrication process once the technology has been optimized. The need to develop a cheap and reliable method for extracting uranium from seawater is extremely valuable to energy independence and will extend the quantity of uranium available to the nuclear power industry far into the future. The development of this technology will also promote science in relation to the extraction of other elements from seawater which could expand the known stockpiles of other highly desirable materials.


Extraction of Uranium from Seawater

Extraction of Uranium from Seawater
Author: Ministry of Education, Science and Culture, Japan
Publisher:
Total Pages: 66
Release: 1987
Genre:
ISBN:

Download Extraction of Uranium from Seawater Book in PDF, ePub and Kindle


Ion Exchange and Solvent Extraction

Ion Exchange and Solvent Extraction
Author: Jacob A. Marinsky
Publisher: CRC Press
Total Pages: 424
Release: 1997-02-21
Genre: Science
ISBN: 9780824798253

Download Ion Exchange and Solvent Extraction Book in PDF, ePub and Kindle

"Volume 13 of this important series continues in the tradition of its widely received predecessors, presenting current advances and results in solvent extraction. Contains nearly 800 helpful drawings, tables, equations and bibliographic citations."


Extraction of Uranium from Seawater

Extraction of Uranium from Seawater
Author: Maha Niametullah Haji
Publisher:
Total Pages: 167
Release: 2017
Genre: Ocean
ISBN:

Download Extraction of Uranium from Seawater Book in PDF, ePub and Kindle

Seawater is estimated to contain 4.5 billion tonnes of uranium, approximately 1000 times that available in conventional terrestrial resources. Finding a sustainable way to harvest uranium from seawater will provide a source of nuclear fuel for generations to come, while also giving all countries with ocean access a stable supply. This will also eliminate the need to store spent fuel for potential future reprocessing, thereby addressing nuclear proliferation issues as well. While extraction of uranium from seawater has been researched for decades, no economical, robust, ocean-deployable method of uranium collection has been presented to date. This thesis presents a symbiotic approach to ocean harvesting of uranium where a common structure supports a wind turbine and a device to harvest uranium from seawater. The Symbiotic Machine for Ocean uRanium Extraction (SMORE) created and tested decouples the function of absorbing uranium from the function of deploying the absorbent which enables a more efficient absorbent to be developed by chemists. The initial SMORE concept involves an adsorbent device that is cycled through the seawater beneath the turbine and through an elution plant located on a platform above the sea surface. This design allows for more frequent harvesting, reduced down- time, and a reduction in the recovery costs of the adsorbent. Specifically, the design decouples the mechanical and chemical requirements of the device through a hard, permeable outer shell containing uranium adsorbing fibers. This system is designed to be used with the 5-MW NREL OC3-Hywind floating spar wind turbine. To optimize the decoupling of the chemical and mechanical requirements using the shell enclosures for the uranium adsorbing fibers, an initial design analysis of the enclosures is presented. Moreover, a flume experiment using filtered, temperature- controlled seawater was developed to determine the effect that the shells have on the uptake of the uranium by the fibers they enclose. For this experiment, the AI8 amidoxime-based adsorbent fiber developed by Oak Ridge National Laboratory was used, which is a hollow-gear-shaped, high surface area polyethylene fiber prepared by radiation-induced graft polymerization of the amidoxime ligand and a vinylphosphonic acid comonomer. The results of the flume experiment were then used to inform the design and fabrication of two 1/10th physical scale SMORE prototypes for ocean testing. The AI8 adsorbent fibers were tested in two shell designs on both a stationary and a moving system during a nine-week ocean trial, with the latter allowing the effect of additional water flow on the adsorbents uranium uptake to be investigated. A novel method using the measurement of radium extracted onto MnO2 impregnated acrylic fibers to quantify the volume of water passing through the shells of the two systems was utilized. The effect of a full-scale uranium harvesting system on the hydrodynamics of an offshore wind turbine were then investigated using a 1/150th Froude scale wave tank test. These experiments compared the measured excitation forces and responses of two versions of SMORE to those of an unmodified floating wind turbine. With insights from the experiments on what a final full-scale design might look like, a cost-analysis was performed to determine the overall uranium production cost from a SMORE device. In this analysis, the capital, operating, and decommissioning costs were calculated and summed using discounted cash ow techniques similar to those used in previous economic models of the uranium adsorbent. Major contributions of this thesis include fundamental design tools for the development and evaluation of symbiotic systems to harvest uranium or other minerals from seawater. These tools will allow others to design offshore uranium harvesting systems based on the adsorbent properties and the scale of the intended installation. These flexible tools can be tuned for a particular adsorbent, location, and installation size, thereby allowing this technology to spread broadly.


Enhancement of Extraction of Uranium from Seawater {u2013} Final Report

Enhancement of Extraction of Uranium from Seawater {u2013} Final Report
Author:
Publisher:
Total Pages: 20
Release: 2016
Genre:
ISBN:

Download Enhancement of Extraction of Uranium from Seawater {u2013} Final Report Book in PDF, ePub and Kindle

Even at a concentration of 3 ?g/L, the world’s oceans contain a thousand times more uranium than currently know terrestrial sources. In order to take advantage of this stockpile, methods and materials must be developed to extract it efficiently, a difficult task considering the very low concentration of the element and the competition for extraction by other atoms in seawater such as sodium, calcium, and vanadium. The majority of current research on methods to extract uranium from seawater are vertical explorations of the grafting of amidoxime ligand which was originally discovered and promoted by Japanese studies in the late 1980s. Our study expands on this research horizontally by exploring the effectiveness of novel uranium extraction ligands grafted to the surface of polymer substrates using radiation. Through this expansion, a greater understanding of uranium binding chemistry and radiation grafting effects on polymers has been obtained. While amidoxime-functionalized fabrics have been shown to have the greatest extraction efficiency so far, they suffer from an extensive chemical processing step which involves treatment with powerful basic solutions. Not only does this add to the chemical waste produced in the extraction process and add to the method’s complexity, but it also significantly impacts the regenerability of the amidoxime fabric. The approach of this project has been to utilize alternative, commercially available monomers capable of extracting uranium and containing a carbon-carbon double bond to allow it to be grafted using radiation, specifically phosphate, oxalate, and azo monomers. The use of commercially available monomers and radiation grafting with electron beam or gamma irradiation will allow for an easily scalable fabrication process once the technology has been optimized. The need to develop a cheap and reliable method for extracting uranium from seawater is extremely valuable to energy independence and will extend the quantity of uranium available to the nuclear power industry far into the future. The development of this technology will also promote science in relation to the extraction of other elements from seawater which could expand the known stockpiles of other highly desirable materials.


International Seminar on Nuclear War and Planetary Emergencies

International Seminar on Nuclear War and Planetary Emergencies
Author: Richard C. Ragaini
Publisher: World Scientific
Total Pages: 913
Release: 2010
Genre: Science
ISBN: 9814327190

Download International Seminar on Nuclear War and Planetary Emergencies Book in PDF, ePub and Kindle

The Erice International Seminars are multidisciplinary seminars attended by over 100 eminent participants from all fields of Science. Each year, a few scientific issues are selected and experts are invited to present contrasting views during the plenary multidisciplinary sessions of the Seminar, followed by general debates. These sessions offer a unique opportunity for specialists to enlarge their fields of vision by being confronted to the ideas and suggestions from high level scientists in complementary domains of science. Associated workshops allow the experts to further refine and process the ideas evoked during the seminar. This year's topics are focused on the World Energy Crisis and more specifically on the Essential Technologies for Moderating Climate Change and Improving Energy Security and for Energy & Limits of Development. We also concentrated on Managing the Challenges of Climate Change, Energy Security and Pollution in Asian Countries. On Global Monitoring of the Planet we have focused on the Climate Change issues and specifically on the Sensitivity of Climate to Additional CO2 as indicated by Water Cycle Feedback Issues, Climate Uncertainties Addressed by Satellites, and the Basic Mathematics Needed for All Models. In Information Security we focused on Cyber Conflict and Cyber Stability. For Pollution and Medicine we focused on the Revolution in the Environmental Health Sciences and the Emergence of Green Chemistry.