Experimental Study Of Reinforced Concrete Columns Subjected To Multi Axial Cyclic Loading PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Experimental Study Of Reinforced Concrete Columns Subjected To Multi Axial Cyclic Loading PDF full book. Access full book title Experimental Study Of Reinforced Concrete Columns Subjected To Multi Axial Cyclic Loading.

Normal-strength and High-strength Concrete Columns Under Cyclic Axial Load and Biaxial Moment

Normal-strength and High-strength Concrete Columns Under Cyclic Axial Load and Biaxial Moment
Author: Mehdi Zarei
Publisher:
Total Pages: 151
Release: 2016
Genre:
ISBN:

Download Normal-strength and High-strength Concrete Columns Under Cyclic Axial Load and Biaxial Moment Book in PDF, ePub and Kindle

The technique of using Carbon Fiber Reinforced Polymer (CFRP) materials to repair and strengthen various concrete members has become popular in the structural retrofitting field as an effective way to enhance the strength and ductility of concrete members due to its superior mechanical properties. In this study a method was introduced to study the behavior of concrete columns with and without CFRP jackets under constant axial load and variable lateral load. The lateral load was applied monotonically and cyclically. To predict the behavior of concrete columns under monotonic and cyclic compressive loadings, a computer code was developed to produce the moment-curvature diagram for concrete sections. The moment-curvature diagram was then input in SAP2000 to study the behavior of reinforced concrete columns. The result of this analysis was found to correlate with experimental data well. The behavior of high-strength concrete (HSC) columns having various properties and subjected to a variety of loading conditions has been the topic of considerable investigation. Of particular significance in this area is the behavior of HSC columns under cyclic compressive load with bidirectional eccentricity. For the experimental investigation, tests of six square slender HSC columns were conducted under stroke control to achieve both ascending and descending branches of the load-deformation curves. Analysis of HSC columns subjected to cyclic axial compression with bidirectional eccentricity was approached from the standpoint of a three-dimensional problem. A computer program based on the extended finite segment method and accounting for geometrical nonlinearity has been proposed here to predict the load-deflection curves of HSC columns under cyclical loading. The HSC stress-strain relationship obtained by parametric study and experimental investigation into the behavior of concrete under cyclical load history has been incorporated into the numerical procedure. The presented computer analysis results have been compared with the experimental data, and a satisfactory agreement was attained for both the ascending and descending branches of the load-deformation curves.


Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings

Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings
Author: P. Fajfar
Publisher: CRC Press
Total Pages: 318
Release: 1992-03-20
Genre: Architecture
ISBN: 1851667644

Download Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings Book in PDF, ePub and Kindle

Forty scientists working in 13 different countries detail in this work the most recent advances in seismic design and performance assessment of reinforced concrete buildings. It is a valuable contribution in the mitigation of natural disasters.


Advances in Structural Vibration

Advances in Structural Vibration
Author: Subashisa Dutta
Publisher: Springer Nature
Total Pages: 580
Release: 2020-10-11
Genre: Technology & Engineering
ISBN: 9811558620

Download Advances in Structural Vibration Book in PDF, ePub and Kindle

This book consists of selected and peer-reviewed papers presented at the 13th International Conference on Vibration Problems (ICOVP 2017). The topics covered in this book include different structural vibration problems such as dynamics and stability under normal and seismic loading, and wave propagation. The book also discusses different materials such as composite, piezoelectric, and functionally graded materials for improving the stiffness and damping properties of structures. The contents of this book can be useful for beginners, researchers and professionals interested in structural vibration and other allied fields.


Modelling and Analysis of Reinforced Concrete Structures for Dynamic Loading

Modelling and Analysis of Reinforced Concrete Structures for Dynamic Loading
Author: Christian Meyer
Publisher: Springer
Total Pages: 257
Release: 2014-05-04
Genre: Technology & Engineering
ISBN: 3709125243

Download Modelling and Analysis of Reinforced Concrete Structures for Dynamic Loading Book in PDF, ePub and Kindle

A comprehensive review of the material behavior of concrete under dynamic loads, especially impact and impuls, opens the volume. It is followed by a summary of the various analytical tools available to engineers interested in analyzing the nonlinear behavior of reinforced concrete members for dynamic load. These range from relatively simple and practice-oriented push-over analysis to sophisticated layered finite element models. Important design-related topics are discussed, with special emphasis on performance of concrete frames subjected to seismic loads. The significance of modern software systems is recognized by including extensive examples. For readers not current in dynamic analysis methods, an appendix contains a review of the mathematical methods most commonly used for such analysis.


RC Frames Under Earthquake Loading

RC Frames Under Earthquake Loading
Author: Comité euro-international du béton
Publisher: Thomas Telford
Total Pages: 328
Release: 1996
Genre: Technology & Engineering
ISBN: 9780727720856

Download RC Frames Under Earthquake Loading Book in PDF, ePub and Kindle

This report examines the behaviour of individual frame members subjected to the cyclic actions arising in seismically loaded frames i.e. slender flexure-dominated beams, short columns and beam-column joints. The report also considers global inelastic frame behaviour and its modelling, and the peculiarities of the behaviour of masonry-filled frames.


Behavior of Concrete and Slender Reinforced Concrete Columns Under Cyclic Axial Compression with Bidirectional Eccentricities

Behavior of Concrete and Slender Reinforced Concrete Columns Under Cyclic Axial Compression with Bidirectional Eccentricities
Author: Byong Youl Bahn
Publisher:
Total Pages: 302
Release: 1993
Genre: Axial loads
ISBN:

Download Behavior of Concrete and Slender Reinforced Concrete Columns Under Cyclic Axial Compression with Bidirectional Eccentricities Book in PDF, ePub and Kindle

A rational analysis of reinforced concrete (R/C) structures requires satisfactory modeling of the behavior of concrete under general loading patterns. The behavioral characteristics of concrete dominantly depends upon its load history. For the study of concrete behavior, parametric study and experimental investigation into the behavior of concrete under load history of random cycles are performed. Through parametric study, the applicability of the previous concrete models is examined and a physically motivated modeling for the cyclic stress-strain relationships is proposed. The present modeling of concrete under general cyclic loading is initiated to provide substantial applicability, flexibility of mathematical expressions and furthermore to describe the behavior of random cycles. For the experimental study of concrete subjected to cyclic axial compressions, tests of 3 in. by 6 in. concrete cylinders are conducted under four different loading regimes to determine the major experimental parameters for the proposed analytical expressions. The model developed is based on the results of parametric study and experimental data obtained for the present study. The validity of the proposed general cyclic model is confirmed through a comparison of the experimental results and simulated behavior of the model. Furthermore, the analytical model proposed has been idealized and incorporated into the procedures in analyzing RIC columns. The behavior of R/C columns having various properties and subjected to a variety of loading conditions have been the topics of considerable investigation. Of particular significance in the area of unexplored problems is the behavior of R/C columns under cyclic compressive load. It should be noted that cyclic loads with bidirectional eccentricities considered are in the longitudinal direction, and not in the transverse direction, with respect to the column axis. For the experimental investigation, tests of four foot long columns are conducted under stroke control to achieve both ascending and descending branches of the load-deformation curves. Analysis of RC columns subjected to cyclic axial compressions with bidirectional eccentricities should be approached from the standpoint of a three dimensional problem. A numerical procedure based on extended finite segment method is proposed here to predict the ultimate load, deflections and moment-curvature of experimental results. It is found that the proposed numerical analysis can reasonably simulate the loading and unloading behavior of R/C columns under combined biaxial bending moments and axial compressions.