Estimating Runoff Prediction Uncertainty Using A Physically Based Stochastic Watershed Model PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Estimating Runoff Prediction Uncertainty Using A Physically Based Stochastic Watershed Model PDF full book. Access full book title Estimating Runoff Prediction Uncertainty Using A Physically Based Stochastic Watershed Model.

Unsaturated Flow in Hydrologic Modeling

Unsaturated Flow in Hydrologic Modeling
Author: H.J. Morel-Seytoux
Publisher: Springer Science & Business Media
Total Pages: 534
Release: 2012-12-06
Genre: Science
ISBN: 940092352X

Download Unsaturated Flow in Hydrologic Modeling Book in PDF, ePub and Kindle

This volume certainly is a Conference Proceedings, the Proceedings of the NATO Advanced Research Workshop (ARW) on "Unsaturated Flow in Hydrologic Modeling" held at "Les Villages du Soleil" near ArIes, France from June 13 to 17, 1988. Let me therefore acknowledge properly, at the very beginning, the gratitude of all the participants to the NATO Science Committee for its generous support and worthwhile goal of bringing together scientists of many countries to communicate and share their experiences. Particular thanks are extended to the director of the program, Dr. Luis Vega da Cunha for his interest and understanding. On the other hand this volume is also, and probably more so, a Textbook that fills a gap in the field of unsaturated flow. Many treatises on the subject present the theory in its different aspects. Hardly any explain in details how the different pieces can be put together to address realistic problems at the basin scale. The various invited contributions to the ARW were structured in a subject progression much as chapters are organized in a book. The intent of the ARW was to assess the current state of knowledge in "Unsaturated Flow" and its use in "Hydrologic Modeling Practice". In a sense the interest in fundamentals of unsaturated flow in this ARW was not just for the sake of knowledge but also and primarily for the sake of action. Can such fundamental knowledge be utilized for better management of the water resource? was the basic question.


Improved Data Uncertainty Handling in Hydrologic Modeling and Forecasting Applications

Improved Data Uncertainty Handling in Hydrologic Modeling and Forecasting Applications
Author: Hongli Liu
Publisher:
Total Pages: 205
Release: 2019
Genre: Flood forecasting
ISBN:

Download Improved Data Uncertainty Handling in Hydrologic Modeling and Forecasting Applications Book in PDF, ePub and Kindle

In hydrologic modeling and forecasting applications, many steps are needed. The steps that are relevant to this thesis include watershed discretization, model calibration, and data assimilation. Watershed discretization separates a watershed into homogeneous computational units for depiction in a distributed hydrologic model. Objective identification of an appropriate discretization scheme remains challenging in part because of the lack of quantitative measures for assessing discretization quality, particularly prior to simulation. To solve this problem, this thesis contributes to develop an a priori discretization error metrics that can quantify the information loss induced by watershed discretization without running a hydrologic model. Informed by the error metrics, a two-step discretization decision-making approach is proposed with the advantages of reducing extreme errors and meeting user-specified discretization error targets. In hydrologic model calibration, several uncertainty-based calibration frameworks have been developed to explicitly consider different hydrologic modeling errors, such as parameter errors, forcing and response data errors, and model structure errors. This thesis focuses on climate and flow data errors. The common way of handling climate and flow data uncertainty in the existing calibration studies is perturbing observations with assumed statistical error models (e.g., addictive or multiplicative Gaussian error model) and incorporating them into parameter estimation by integration or repetition with multiple climate and (or) flow realizations. Given the existence of advanced climate and flow data uncertainty estimation methods, this thesis proposes replacing assumed statistical error models with physically-based (and more realistic and convenient) climate and flow ensembles. Accordingly, this thesis contributes developing a climate-flow ensemble based hydrologic model calibration framework. The framework is developed through two stages. The first stage only considers climate data uncertainty, leading to the climate ensemble based hydrologic calibration framework. The framework is parsimonious and can utilize any sources of historical climate ensembles. This thesis demonstrates the method of using the Gridded Ensemble Precipitation and Temperature Estimates dataset (Newman et al., 2015), referred to as N15 here, to derive precipitation and temperature ensembles. Assessment of this framework is conducted using 30 synthetic experiments and 20 real case studies. Results show that the framework generates more robust parameter estimates, reduces the inaccuracy of flow predictions caused by poor quality climate data, and improves the reliability of flow predictions. The second stage adds flow ensemble to the previously developed framework to explicitly consider flow data uncertainty and thus completes the climate-flow ensemble based calibration framework. The complete framework can work with likelihood-free calibration methods. This thesis demonstrates the method of using the hydraulics-based Bayesian rating curve uncertainty estimation method (BaRatin) (Le Coz et al., 2014) to generate flow ensemble. The continuous ranked probability score (CRPS) is taken as an objective function of the framework to compare the scalar model prediction with the measured flow ensemble. The framework performance is assessed based on 10 case studies. Results show that explicit consideration of flow data uncertainty maintains the accuracy and slightly improves the reliability of flow predictions, but compared with climate data uncertainty, flow data uncertainty plays a minor role of improving flow predictions. Regarding streamflow forecasting applications, this thesis contributes by improving the treatment of measured climate data uncertainty in the ensemble Kalman filter (EnKF) data assimilation. Similar as in model calibration, past studies usually use assumed statistical error models to perturb climate data in the EnKF. In data assimilation, the hyper-parameters of the statistical error models are often estimated by a trial-and-error tuning process, requiring significant analyst and computational time. To improve the efficiency of climate data uncertainty estimation in the EnKF, this thesis proposes the direct use of existing climate ensemble products to derive climate ensembles. The N15 dataset is used here to generate 100-member precipitation and temperature ensembles. The N15 generated climate ensembles are compared with the carefully tuned hyper-parameter generated climate ensembles in ensemble flow forecasting over 20 catchments. Results show that the N15 generated climate ensemble yields improved or similar flow forecasts than hyper-parameter generated climate ensembles. Therefore, it is possible to eliminate the time-consuming climate relevant hyper-parameter tuning from the EnKF by using existing ensemble climate products without losing flow forecast performance. After finishing the above research, a robust hydrologic modeling approach is built by using the thesis developed model calibration and data assimilation methods. The last contribution of this thesis is validating such a robust hydrologic model in ensemble flow forecasting via comparison with the use of traditional multiple hydrologic models. The robust single-model forecasting system considers parameter and climate data uncertainty and uses the N15 dataset to perturb historical climate in the EnKF. In contrast, the traditional multi-model forecasting system does not consider parameter and climate data uncertainty and uses assumed statistical error models to perturb historical climate in the EnKF. The comparison study is conducted on 20 catchments and reveal that the robust single hydrologic model generates improved ensemble high flow forecasts. Therefore, robust single model is definitely an advantage for ensemble high flow forecasts. The robust single hydrologic model relieves modelers from developing multiple (and often distributed) hydrologic models for each watershed in their operational ensemble prediction system.


Uncertainty and Sensitivity Analysis for Watershed Models with Calibrated Parameters

Uncertainty and Sensitivity Analysis for Watershed Models with Calibrated Parameters
Author: Seunguk Lee
Publisher:
Total Pages: 0
Release: 2010
Genre:
ISBN:

Download Uncertainty and Sensitivity Analysis for Watershed Models with Calibrated Parameters Book in PDF, ePub and Kindle

This thesis provides a critique and evaluation of the Generalized Likelihood Uncertainty Estimation (GLUE) methodology, and provides an appraisal of sensitivity analysis methods for watershed models with calibrated parameters. The first part of this thesis explores the strengths and weaknesses of the GLUE methodology with commonly adopted subjective likelihood measures using a simple linear watershed model. Recent research documents that the widely accepted GLUE procedure for describing forecasting precision and the impact of parameter uncertainty in rainfall-runoff watershed models fails to achieve the intended purpose when used with an informal likelihood measure (Christensen, 2004; Montanari, 2005; Mantovan and Todini, 2006; Stedinger et al., 2008). In particular, GLUE generally fails to produce intervals that capture the precision of estimated parameters, and the distribution of differences between predictions and future observations. This thesis illustrates these problems with GLUE using a simple linear rainfall-runoff model so that model calibration is a linear regression problem for which exact expressions for prediction precision and parameter uncertainty are well known and understood. The results show that the choice of a likelihood function is critical. A likelihood function needs to provide a reasonable distribution for the model errors for the statistical inference and resulting uncertainty and prediction intervals to be valid. The second part of this thesis discusses simple uncertainty and sensitivity analysis for watershed models when parameter estimates result form a joint calibration to observed data. Traditional measures of sensitivity in watershed modeling are based upon a framework wherein parameters are specified externally to a model, so one can independently investigate the impact of uncertainty in each parameter on model output. However, when parameter estimates result from a joint calibration to observed data, the resulting parameter estimators are interdependent and different sensitivity analysis procedures should be employed. For example, over some range, evaporation rates may be adjusted to correct for changes in a runoff coefficient, and vice versa. As a result, descriptions of the precision of such parameters may be very large individually, even though their joint response is well defined by the calibration data. These issues are illustrated with the simple abc watershed model. When fitting the abc watershed model to data, in some cases our analysis explicitly accounts for rainfall measurement errors so as to adequately represent the likelihood function for the data given the major source of errors causing lack of fit. The calibration results show that the daily precipitation from one gauge employed provides an imperfect description of basin precipitation, and precipitation errors results in correlation among flow errors and degraded the goodness of fit.


Hydrological Modelling and the Water Cycle

Hydrological Modelling and the Water Cycle
Author: Soroosh Sorooshian
Publisher: Springer Science & Business Media
Total Pages: 294
Release: 2008-07-18
Genre: Science
ISBN: 3540778438

Download Hydrological Modelling and the Water Cycle Book in PDF, ePub and Kindle

This volume is a collection of a selected number of articles based on presentations at the 2005 L’Aquila (Italy) Summer School on the topic of “Hydrologic Modeling and Water Cycle: Coupling of the Atmosphere and Hydrological Models”. The p- mary focus of this volume is on hydrologic modeling and their data requirements, especially precipitation. As the eld of hydrologic modeling is experiencing rapid development and transition to application of distributed models, many challenges including overcoming the requirements of compatible observations of inputs and outputs must be addressed. A number of papers address the recent advances in the State-of-the-art distributed precipitation estimation from satellites. A number of articles address the issues related to the data merging and use of geo-statistical techniques for addressing data limitations at spatial resolutions to capture the h- erogeneity of physical processes. The participants at the School came from diverse backgrounds and the level of - terest and active involvement in the discussions clearly demonstrated the importance the scienti c community places on challenges related to the coupling of atmospheric and hydrologic models. Along with my colleagues Dr. Erika Coppola and Dr. Kuolin Hsu, co-directors of the School, we greatly appreciate the invited lectures and all the participants. The members of the local organizing committee, Drs Barbara Tomassetti; Marco Verdecchia and Guido Visconti were instrumental in the success of the school and their contributions, both scienti cally and organizationally are much appreciated.


Treatise on Water Science

Treatise on Water Science
Author:
Publisher: Newnes
Total Pages: 2131
Release: 2010-09-01
Genre: Technology & Engineering
ISBN: 0444531998

Download Treatise on Water Science Book in PDF, ePub and Kindle

Water quality and management are of great significance globally, as the demand for clean, potable water far exceeds the availability. Water science research brings together the natural and applied sciences, engineering, chemistry, law and policy, and economics, and the Treatise on Water Science seeks to unite these areas through contributions from a global team of author-experts. The 4-volume set examines topics in depth, with an emphasis on innovative research and technologies for those working in applied areas. Published in partnership with and endorsed by the International Water Association (IWA), demonstrating the authority of the content Editor-in-Chief Peter Wilderer, a Stockholm Water Prize recipient, has assembled a world-class team of volume editors and contributing authors Topics related to water resource management, water quality and supply, and handling of wastewater are treated in depth