Epitaxial And Lateral Solid Phase Crystallization Of Complex Oxides PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Epitaxial And Lateral Solid Phase Crystallization Of Complex Oxides PDF full book. Access full book title Epitaxial And Lateral Solid Phase Crystallization Of Complex Oxides.

Epitaxial and Lateral Solid-phase Crystallization of Complex Oxides

Epitaxial and Lateral Solid-phase Crystallization of Complex Oxides
Author: Yajin Chen
Publisher:
Total Pages: 0
Release: 2019
Genre:
ISBN:

Download Epitaxial and Lateral Solid-phase Crystallization of Complex Oxides Book in PDF, ePub and Kindle

The crystallization of complex-oxide materials through a transformation from the amorphous to crystalline forms presents a range of new opportunities to synthesize new materials, and simultaneously poses important scientific challenges. New crystallization method complements more conventional vapor-phase epitaxy techniques for epitaxial complex-oxide thin film growth that involve long-range surface diffusion on 2D planar crystal surfaces. The vapor-phase techniques are not readily adaptable to creating nanoscale epitaxial complex-oxide crystals. The alternative synthesis method described in this thesis is solid-phase crystallization, which is the crystallization of amorphous oxides, often in the form of thin films, by post-deposition heating. The creation of epitaxial complex-oxide nanostructures can facilitate their integration in 3D electronic, optoelectronic and ionic devices. Epitaxial complex-oxide crystals in intricate geometries can be created by solid-phase crystallization employing patterned substrates with a distribution of isolated crystalline seeds. This method requires the study of distinct crystal growth and nucleation kinetics on epitaxial and non-epitaxial surfaces. Nanoscale seeded crystallization can be achieved by understanding the relative rates of nucleation and lateral crystal growth processes, and the role of seeds in determining the overall orientation of the resulting crystals. Epitaxial complex-oxide thin films in intricate geometries with an expanded range of compositions can be created by combining the use of atomic layer deposition (ALD) and solid-phase crystallization, with the development of new ALD procedures to deposit amorphous oxide films and the study of the subsequent crystallization processes to select the crystalline structures of the crystallized film. ALD itself allows for the conformal deposition of thin films over non-planar surfaces. Solid-phase crystallization can also be used to deposit epitaxial complex-oxide thin films with a wider range of compositions, including those that cannot be deposited from the vapor phase at high temperatures. Such oxides include the oxides that have complex compositions and volatile components. The different kinetic constraints of solid-phase crystallization allow the epitaxial growth of those oxide thin films because of the slow diffusion in the solid state at relatively low crystallization temperatures. This thesis describes the discovery that, at low crystallization temperatures, epitaxial crystal growth of the model perovskite SrTiO3 on single-crystal SrTiO3 propagates over long distances without nucleation of SrTiO3 on Si with a native oxide. Two kinds of isolated nanoscale seed crystals are employed to study the seeded lateral crystallization of SrTiO3, yielding highly similar results. Micron-scale crystalline regions form surrounding the seeds before encountering separately nucleated crystals away from the seeds. Seed crystals play an important role in determining the orientations of the resulting crystals. New chemical precursors and ALD procedures were developed to grow amorphous PrAlO3 films. An epitaxial [lowercase gamma]-Al2O3 layer formed at the interface between the PrAlO3 film and (001) SrTiO3 substrate during the deposition. Epitaxial PrAlO3 films were achieved on (001) [lowercase gamma]-Al2O3/SrTiO3 by solid-phase epitaxy. The study of SrTiO3 and PrAlO[3] is also applicable to a series of chemically and structurally similar functional ABO3 compounds. The concepts of solid-phase crystallization also apply to oxides with multiple metal ions and more complex crystal structure. The kinetic processes occurring during the crystallization of ScAlMgO4, on (0001) sapphire substrates are quite different at two different temperatures. Epitaxial ScAlMgO4 crystals grow through the film thickness at a crystallization temperature of 950 °C. Solid-state reaction and evaporation of the component Sc prohibits the formation of large ScAlMgO4 crystals at a crystallization temperature of 1400 °C. Low-temperature crystallization can be used to create epitaxial oxide thin films with complex compositions and volatile components.


Epitaxial Growth of Complex Metal Oxides

Epitaxial Growth of Complex Metal Oxides
Author: Gertjan Koster
Publisher: Woodhead Publishing
Total Pages: 534
Release: 2022-04-22
Genre: Science
ISBN: 0081029462

Download Epitaxial Growth of Complex Metal Oxides Book in PDF, ePub and Kindle

Epitaxial Growth of Complex Metal Oxides, Second Edition reviews techniques and recent developments in the fabrication quality of complex metal oxides, which are facilitating advances in electronic, magnetic and optical applications. Sections review the key techniques involved in the epitaxial growth of complex metal oxides and explore the effects of strain and stoichiometry on crystal structure and related properties in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films, including optoelectronics, batteries, spintronics and neuromorphic applications. This new edition has been fully updated, with brand new chapters on topics such as atomic layer deposition, interfaces, STEM-EELs, and the epitaxial growth of multiferroics, ferroelectrics and nanocomposites. Examines the techniques used in epitaxial thin film growth for complex oxides, including atomic layer deposition, sputtering techniques, molecular beam epitaxy, and chemical solution deposition techniques Reviews materials design strategies and materials property analysis methods, including the impacts of defects, strain, interfaces and stoichiometry Describes key applications of epitaxially grown metal oxides, including optoelectronics, batteries, spintronics and neuromorphic applications


Nanoscale Strontium Titanate Sheets and Crystals

Nanoscale Strontium Titanate Sheets and Crystals
Author: Jack Andrew Tilka
Publisher:
Total Pages: 117
Release: 2018
Genre:
ISBN:

Download Nanoscale Strontium Titanate Sheets and Crystals Book in PDF, ePub and Kindle

The physical properties of materials are dominated by their structure and composition. Insight into the structure of complex oxide materials has the potential to improve our understanding and eventually control of their physical properties. This PhD thesis reports the development of characterization and fabrication techniques relevant to improving the scientific understanding of complex oxide materials. The work presented here has two components. I report a way to use ideas that were originally developed in semiconductor processing to control the elastic strain state and crystallization process of the model complex oxide SrTiO3. An additional component is an important series of advances in the analysis of diffraction patterns acquired with focused x-ray nanobeams. The fabrication and characterization of nanoscale SrTiO3 has been experimentally shown to allow the introduction of elastic strain into SrTiO3. The creation of thin SrTiO3 crystals from (001)-oriented SrTiO3 bulk single crystals using focused ion beam milling techniques yields sheets with submicron thickness and arbitrary orientation within the (001) plane. Synchrotron x-ray nanodiffraction experiments show that the SrTiO3 sheets have rocking curves with angular widths less than 0.02°. These widths are less than a factor of two larger than bulk SrTiO3, which shows that the sheets are suitable substrates for epitaxial thin film growth. A precisely selected elastic strain can be introduced into the SrTiO3 sheets using a silicon nitride stressor layer. Synchrotron x-ray nanodiffraction studies show that the strain introduced in the SrTiO3 sheets is on the order of 10-4, matching the predictions of an elastic model. This approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect not achievable in heteroepitaxy on rigid substrates. An additional fabrication technique is also evaluated here based on the crystallization of SrTiO3 from initially amorphous thin films. This process is known as solid-phase epitaxy in two-dimensional samples but is just beginning to be explored in more complex geometries. I report experiments in both homoepitaxy and heteroepitaxy including measurements of crystal growth rates and the crystallographic orientations of crystals formed in this way. The lateral growth rates are consistent with previously measured vertical growth. This result indicated that previous work on vertical solid-phase epitaxy could be extended into lateral solid-phase epitaxy, which has the power to be applied to complicated non-planar geometries. The highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale structural characterization of materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. I report here a series of methods that expand the range of physical problems that can be accurately captured by coherent x-ray optical simulations. My approach has been to expand simulations methods to include arbitrary x-ray incident angles and arbitrary epitaxial heterostructures. I first applied these methods to extract the misorientation of lattice planes and the strain of individual layers of Si/SiGe heterostructures relevant to applications in quantum electronics. Further applications reported in this thesis are in probing defects created in the processing of SrTiO3 and in measuring the change in lattice parameter introduced into strained SrTiO3 sheets. The systematic interpretation of nanobeam diffraction patterns aids in the fabrication of SrTiO3 nanostructures.


Multifunctional Oxide Heterostructures

Multifunctional Oxide Heterostructures
Author: Evgeny Y. Tsymbal
Publisher: Oxford University Press
Total Pages: 429
Release: 2012-08-30
Genre: Science
ISBN: 0199584125

Download Multifunctional Oxide Heterostructures Book in PDF, ePub and Kindle

This volume explores the rapidly developing field of oxide thin-films and heterostructures, which exhibit unusual physical properties interesting from the fundamental point of view and for device application. The chapters discuss topics that represent some of the key innovations in the field over recent years.


Epitaxial Oxide Thin Films II: Volume 401

Epitaxial Oxide Thin Films II: Volume 401
Author: James S. Speck
Publisher:
Total Pages: 588
Release: 1996-03-29
Genre: Science
ISBN:

Download Epitaxial Oxide Thin Films II: Volume 401 Book in PDF, ePub and Kindle

Our understanding and control of epitaxial oxide heterostructures has progressed along multiple frontiers including magnetic, dielectric, ferroelectric, and superconducting oxide materials. This has resulted in both independent rediscovery and the successful borrowing of ideas from ceramic science, solid-state physics, and semiconductor epitaxy. A new field of materials science has emerged which aims at the use of the intrinsic properties of various oxide materials in single-crystal thin-film form. Exploiting the potential of these materials, however, will only be possible if many fundamental and engineering questions can be answered. This book represents continued progress toward fulfilling that promise. Technical information on epitaxial oxide thin films from industry, academia and government laboratories is presented. Topics include: dielectrics; ferroelectrics; optics; superconductors; magnetics; magnetoresistance.


Interplay of Strain, Polarization and Magnetic Ordering in Complex Oxides from First Principles

Interplay of Strain, Polarization and Magnetic Ordering in Complex Oxides from First Principles
Author: Carl-Johan Eklund
Publisher:
Total Pages: 65
Release: 2010
Genre: Oxides
ISBN:

Download Interplay of Strain, Polarization and Magnetic Ordering in Complex Oxides from First Principles Book in PDF, ePub and Kindle

We study mechanisms of structural and magnetic phase transitions in crystalline oxides from first principles. The focus is on epitaxial stabilization in perovskites and on magnetoelastic coupling and frustration in spinels. These materials and phenomena are of great interest for basic science and have important roles to play in the design and discovery of new functional materials. The effects of epitaxial strain on the structure of the perovskite oxide CaTiO3 are investigated. Particular attention is paid to the stabilization of a ferroelectric phase related to the polar instability found in previous first-principles studies of calcium titanate in the ideal cubic perovskite structure. At 1.5% strain, we find an epitaxial orientation transition between the ab-ePbnm phase, favoured for compressive strains, and the c-ePbnm phase. For larger tensile strains, a polar instability, which was hidden in the equilibrium bulk structure, develops in the c-ePbnm phase and an epitaxial-strain-induced ferroelectric phase is obtained with polarization along a [110] direction with respect to the primitive perovskite lattice vectors of the square substrate. A ferroelectric rhombohedral R3c phase, with a different combination of octahedral rotations, is also found to be competitive in energy for large tensile strains, and might be observable under the application of additional perturbations, such as a small degree of cation substitution. We present an ongoing project to construct a first-principles effective Hamiltonian to investigate the transition from the high-temperature cubic phase to a low-temperature low-symmetry phase observed in the spinel structure oxides CdCr2O4 and ZnCr2O4. The local modes included in the expansion are the chromium displacements, distortions of the cadmium- or zinc-centred tetrahedra, and the homogeneous strain. The magnetostructural coupling of these degrees of freedom to the spins of the chromium ions is included in the effective Hamiltonian parametrization and first-principles determination using a symmetry analysis. The role of the magnetostructural coupling in the phase transition is analysed and discussed.


Metal-Induced Crystallization

Metal-Induced Crystallization
Author: Zumin Wang
Publisher: CRC Press
Total Pages: 317
Release: 2015-01-28
Genre: Science
ISBN: 9814463418

Download Metal-Induced Crystallization Book in PDF, ePub and Kindle

Crystalline semiconductors in the form of thin films are crucial materials for many modern, advanced technologies in fields such as microelectronics, optoelectronics, display technology, and photovoltaic technology. Crystalline semiconductors can be produced at surprisingly low temperatures (as low as 120C) by crystallization of amorphous semicon