Engineering Yeast To Produce Plant Natural Products PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Engineering Yeast To Produce Plant Natural Products PDF full book. Access full book title Engineering Yeast To Produce Plant Natural Products.

Tools and Platforms to Advance the Engineering of Yeast for Plant Natural Product Biosynthesis

Tools and Platforms to Advance the Engineering of Yeast for Plant Natural Product Biosynthesis
Author: Osman Kazi Jamil
Publisher:
Total Pages:
Release: 2022
Genre:
ISBN:

Download Tools and Platforms to Advance the Engineering of Yeast for Plant Natural Product Biosynthesis Book in PDF, ePub and Kindle

Plant natural products play a critical role in our healthcare systems. It is estimated that up to 25% of modern drugs are derived from plant natural products. However, the cultivation of plants to produce, harvest, and extract plant natural product drugs requires a significant investment of land, water, and energy. In addition, the production supply chain, which includes a lengthy plant growth step, can result in frequent supply shortages. Increasingly, researchers are looking to microbial hosts, such as yeast, as alternative heterologous production hosts for plant natural products. Yeast have short doubling times to generate biomass quickly, can be readily engineered using a variety of genetic manipulation tools, and are able to functionally express a diversity of complex proteins and enzymes that play a role in plant secondary metabolism. As a result, several biosynthetic pathways of clinical importance have been reconstructed in yeast over the past decade, with a number now scaling to commercial production. Examples of plant-derived medicines that have been produced in yeast include analgesics like thebaine and hydrocodone, antitussives like noscapine, and neuromuscular agents like hyoscyamine and scopolamine. While significant progress in engineering yeast to produce complex plant natural products has been made, several challenges remain. One key challenge is in the elucidation of the biosynthetic routes evolved in plants to produce these secondary metabolites. Pathway discovery workflows incorporating genome mining and RNA co-expression have made significant advances in elucidating biosynthetic pathways, but for many pathways, there are enzymes responsible for key conversion steps that remain unknown. Additionally, functional expression of the enzyme or protein in a microbial host can present further challenges. Controlling flux through long, multi-step heterologous pathways often presents another challenge to efficient yeast biosynthesis of plant natural products. Pathway intermediates can be diverted through native host metabolism or exported out of the host before being converted by the next enzyme in the pathway of interest. My thesis work focuses on the production of tetrahydropapaverine (THP) and papaverine. To-date the biosynthesis of THP and papaverine in a heterologous host not been achieved, in part because the full plant biosynthetic pathway has not been elucidated. THP and papaverine are BIAs with established clinical significance that are extracted from the opium poppy. THP is a precursor in the production of the neuromuscular blocking agents atracurium and cisatracurium. These drugs, often administered during anesthesia to facilitate intubation, have experienced recent global supply shortages. Papaverine is used directly in the clinic as a vasodilator and antispasmodic and similarly experienced supply shortages over the past decade. To reconstruct the THP biosynthetic pathway in yeast, we identified enzymes with similar activities to the unidentified enzymes in the native plant pathway and improved their activity on pathway intermediates using protein engineering strategies. We used a combination of random and semi-rational mutagenesis techniques to identify enzyme variants with significantly increased activity on the non-native substrates. We also increased the flux through the pathway by knocking out two native yeast transporters that affect the export of pathway intermediates. We then accomplished the semi-synthesis of papaverine by combining the THP biosynthesis route with a one-step, aqueous chemical oxidation reaction. This work describes the first de novo biosynthesis of THP and semi-synthesis of papaverine. The strategies we used to synthesize these products, despite multiple missing steps in the pathway, can be broadly implemented in plant natural product biosynthesis and semi-synthesis.


Microbial Cell Factories Engineering for Production of Biomolecules

Microbial Cell Factories Engineering for Production of Biomolecules
Author: Vijai Singh
Publisher: Academic Press
Total Pages: 490
Release: 2021-02-13
Genre: Science
ISBN: 0128214783

Download Microbial Cell Factories Engineering for Production of Biomolecules Book in PDF, ePub and Kindle

Microbial Cell Factories Engineering for Production of Biomolecules presents a compilation of chapters written by eminent scientists worldwide. Sections cover major tools and technologies for DNA synthesis, design of biosynthetic pathways, synthetic biology tools, biosensors, cell-free systems, computer-aided design, OMICS tools, CRISPR/Cas systems, and many more. Although it is not easy to find relevant information collated in a single volume, the book covers the production of a wide range of biomolecules from several MCFs, including Escherichia coli, Bacillus subtilis, Pseudomonas putida, Streptomyces, Corynebacterium, Cyanobacteria, Saccharomyces cerevisiae, Pichia pastoris and Yarrowia lipolytica, and algae, among many others. This will be an excellent platform from which scientific knowledge can grow and widen in MCF engineering research for the production of biomolecules. Needless to say, the book is a valuable source of information not only for researchers designing cell factories, but also for students, metabolic engineers, synthetic biologists, genome engineers, industrialists, stakeholders and policymakers interested in harnessing the potential of MCFs in several fields. Offers basic understanding and a clear picture of various MCFs Explains several tools and technologies, including DNA synthesis, synthetic biology tools, genome editing, biosensors, computer-aided design, and OMICS tools, among others Harnesses the potential of engineered MCFs to produce a wide range of biomolecules for industrial, therapeutic, pharmaceutical, nutraceutical and biotechnological applications Highlights the advances, challenges, and future opportunities in designing MCFs


The Science and Applications of Synthetic and Systems Biology

The Science and Applications of Synthetic and Systems Biology
Author: Institute of Medicine
Publisher: National Academies Press
Total Pages: 570
Release: 2011-12-30
Genre: Science
ISBN: 0309219396

Download The Science and Applications of Synthetic and Systems Biology Book in PDF, ePub and Kindle

Many potential applications of synthetic and systems biology are relevant to the challenges associated with the detection, surveillance, and responses to emerging and re-emerging infectious diseases. On March 14 and 15, 2011, the Institute of Medicine's (IOM's) Forum on Microbial Threats convened a public workshop in Washington, DC, to explore the current state of the science of synthetic biology, including its dependency on systems biology; discussed the different approaches that scientists are taking to engineer, or reengineer, biological systems; and discussed how the tools and approaches of synthetic and systems biology were being applied to mitigate the risks associated with emerging infectious diseases. The Science and Applications of Synthetic and Systems Biology is organized into sections as a topic-by-topic distillation of the presentations and discussions that took place at the workshop. Its purpose is to present information from relevant experience, to delineate a range of pivotal issues and their respective challenges, and to offer differing perspectives on the topic as discussed and described by the workshop participants. This report also includes a collection of individually authored papers and commentary.


Yeasts in Food

Yeasts in Food
Author: T Boekhout
Publisher: Elsevier
Total Pages: 511
Release: 2003-05-07
Genre: Technology & Engineering
ISBN: 1845698487

Download Yeasts in Food Book in PDF, ePub and Kindle

Yeasts play a crucial role in the sensory quality of a wide range of foods. They can also be a major cause of food spoilage. Maximising their benefits whilst minimising their detrimental effects requires a thorough understanding of their complex characteristics and how these can best be manipulated by food processors. Yeasts in food begins by describing the enormous range of yeasts together with methods for detection, identification and analysis. It then discusses spoilage yeasts, methods of control and stress responses to food preservation techniques. Against this background, the bulk of the book looks at the role of yeasts in particular types of food. There are chapters on dairy products, meat, fruit, bread, soft drinks, alcoholic beverages, soy products, chocolate and coffee. Each chapter describes the diversity of yeasts associated with each type of food, their beneficial and detrimental effects on food quality, methods of analysis and quality control. With its distinguished editors and international team of over 30 contributors, Yeasts in food is a standard reference for the food industry in maximising the contribution of yeasts to food quality. Describes the enormous range of yeasts together with methods for detection, identification and analysis Discusses spoilage yeasts, methods of control and stress responses to food preservation techniques Examines the beneficial and detrimental effects of yeasts in particular types of food, including dairy products, meat, fruit, bread, soft drinks, alcoholic beverages, soy products, chocolate and coffee


Synthetic Biology and Metabolic Engineering in Plants and Microbes Part A: Metabolism in Microbes

Synthetic Biology and Metabolic Engineering in Plants and Microbes Part A: Metabolism in Microbes
Author:
Publisher: Academic Press
Total Pages: 428
Release: 2016-07-11
Genre: Science
ISBN: 0128046163

Download Synthetic Biology and Metabolic Engineering in Plants and Microbes Part A: Metabolism in Microbes Book in PDF, ePub and Kindle

Synthetic Biology and Metabolic Engineering in Plants and Microbes: Part A, the new volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods, synthetic biology, and metabolic engineering in plants and microbes, and includes sections on such topics as the uses of integrases in microbial engineering, biosynthesis, and engineering of tryptophan derived metabolites, regulation and discovery of fungal natural products, and elucidation and localization of plant pathways. Continues the legacy of this premier serial with quality chapters authored by leaders in the field Contains two volumes covering research methods in synthetic biology and metabolic engineering in plants and microbes Presents sections on such topics as the uses of integrases in microbial engineering, biosynthesis, and engineering of tryptophan derived metabolites, regulation and discovery of fungal natural products, and elucidation and localization of plant pathways


Plant-derived Natural Products

Plant-derived Natural Products
Author: Anne E. Osbourn
Publisher: Springer Science & Business Media
Total Pages: 588
Release: 2009-07-07
Genre: Science
ISBN: 0387854983

Download Plant-derived Natural Products Book in PDF, ePub and Kindle

Plants produce a huge array of natural products (secondary metabolites). These compounds have important ecological functions, providing protection against attack by herbivores and microbes and serving as attractants for pollinators and seed-dispersing agents. They may also contribute to competition and invasiveness by suppressing the growth of neighboring plant species (a phenomenon known as allelopathy). Humans exploit natural products as sources of drugs, flavoring agents, fragrances and for a wide range of other applications. Rapid progress has been made in recent years in understanding natural product synthesis, regulation and function and the evolution of metabolic diversity. It is timely to bring this information together with contemporary advances in chemistry, plant biology, ecology, agronomy and human health to provide a comprehensive guide to plant-derived natural products. Plant-derived natural products: synthesis, function and application provides an informative and accessible overview of the different facets of the field, ranging from an introduction to the different classes of natural products through developments in natural product chemistry and biology to ecological interactions and the significance of plant-derived natural products for humans. In the final section of the book a series of chapters on new trends covers metabolic engineering, genome-wide approaches, the metabolic consequences of genetic modification, developments in traditional medicines and nutraceuticals, natural products as leads for drug discovery and novel non-food crops.


Metabolic Engineering

Metabolic Engineering
Author: Sang Yup Lee
Publisher: John Wiley & Sons
Total Pages: 1075
Release: 2021-06-02
Genre: Science
ISBN: 352782345X

Download Metabolic Engineering Book in PDF, ePub and Kindle

Learn more about foundational and advanced topics in metabolic engineering in this comprehensive resource edited by leaders in the field Metabolic Engineering: Concepts and Applications delivers a one-stop resource for readers seeking a complete description of the concepts, models, and applications of metabolic engineering. This guide offers practical insights into the metabolic engineering of major cell lines, including E. Coli, Bacillus and Yarrowia Lipolytica, and organisms, including human, animal, and plant). The distinguished editors also offer readers resources on microbiome engineering and the use of metabolic engineering in bioremediation. Written in two parts, Metabolic Engineering begins with the essential models and strategies of the field, like Flux Balance Analysis, Quantitative Flux Analysis, and Proteome Constrained Models. It also provides an overview of topics like Pathway Design, Metabolomics, and Genome Editing of Bacteria and Eukarya. The second part contains insightful descriptions of the practical applications of metabolic engineering, including specific examples that shed light on the topics within. In addition to subjects like the metabolic engineering of animals, humans, and plants, you’ll learn more about: Metabolic engineering concepts and a historical perspective on their development The different modes of analysis, including flux balance analysis and quantitative flux analysis An illuminating and complete discussion of the thermodynamics of metabolic pathways The Genome architecture of E. coli, as well as genome editing of both bacteria and eukarya An in-depth treatment of the application of metabolic engineering techniques to organisms including corynebacterial, bacillus, and pseudomonas, and more Perfect for students of biotechnology, bioengineers, and biotechnologists, Metabolic Engineering: Concepts and Applications also has a place on the bookshelves of research institutes, biotechnological institutes and industry labs, and university libraries. It's comprehensive treatment of all relevant metabolic engineering concepts, models, and applications will be of use to practicing biotechnologists and bioengineers who wish to solidify their understanding of the field.


Systems Metabolic Engineering

Systems Metabolic Engineering
Author: Christoph Wittmann
Publisher: Springer Science & Business Media
Total Pages: 391
Release: 2012-06-15
Genre: Medical
ISBN: 9400745346

Download Systems Metabolic Engineering Book in PDF, ePub and Kindle

Systems Metabolic Engineering is changing the way microbial cell factories are designed and optimized for industrial production. Integrating systems biology and biotechnology with new concepts from synthetic biology enables the global analysis and engineering of microorganisms and bioprocesses at super efficiency and versatility otherwise not accessible. Without doubt, systems metabolic engineering is a major driver towards bio-based production of chemicals, materials and fuels from renewables and thus one of the core technologies of global green growth. In this book, Christoph Wittmann and Sang-Yup Lee have assembled the world leaders on systems metabolic engineering and cover the full story – from genomes and networks via discovery and design to industrial implementation practises. This book is a comprehensive resource for students and researchers from academia and industry interested in systems metabolic engineering. It provides us with the fundaments to targeted engineering of microbial cells for sustainable bio-production and stimulates those who are interested to enter this exiting research field.


Yeast Genetic Engineering

Yeast Genetic Engineering
Author: Philip J. Barr
Publisher: Butterworth-Heinemann
Total Pages: 384
Release: 1989
Genre: Science
ISBN:

Download Yeast Genetic Engineering Book in PDF, ePub and Kindle

An illustration of the impressive development of yeast gene expression systems accomplished in recent years which demonstrates the power of these systems for the production of proteins in quantities useful as therapeutics, industrial enzymes and research agents.