Elements Of Machine Learning PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Elements Of Machine Learning PDF full book. Access full book title Elements Of Machine Learning.

Elements of Machine Learning

Elements of Machine Learning
Author: Pat Langley
Publisher: Morgan Kaufmann
Total Pages: 436
Release: 1996
Genre: Computers
ISBN: 9781558603011

Download Elements of Machine Learning Book in PDF, ePub and Kindle

Machine learning is the computational study of algorithms that improve performance based on experience, and this book covers the basic issues of artificial intelligence. Individual sections introduce the basic concepts and problems in machine learning, describe algorithms, discuss adaptions of the learning methods to more complex problem-solving tasks and much more.


The Elements of Statistical Learning

The Elements of Statistical Learning
Author: Trevor Hastie
Publisher: Springer Science & Business Media
Total Pages: 545
Release: 2013-11-11
Genre: Mathematics
ISBN: 0387216065

Download The Elements of Statistical Learning Book in PDF, ePub and Kindle

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.


An Introduction to Statistical Learning

An Introduction to Statistical Learning
Author: Gareth James
Publisher: Springer Nature
Total Pages: 617
Release: 2023-08-01
Genre: Mathematics
ISBN: 3031387473

Download An Introduction to Statistical Learning Book in PDF, ePub and Kindle

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.


Elements of Causal Inference

Elements of Causal Inference
Author: Jonas Peters
Publisher: MIT Press
Total Pages: 289
Release: 2017-11-29
Genre: Computers
ISBN: 0262037319

Download Elements of Causal Inference Book in PDF, ePub and Kindle

A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.


Understanding Machine Learning

Understanding Machine Learning
Author: Shai Shalev-Shwartz
Publisher: Cambridge University Press
Total Pages: 415
Release: 2014-05-19
Genre: Computers
ISBN: 1107057132

Download Understanding Machine Learning Book in PDF, ePub and Kindle

Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.


Mathematics for Machine Learning

Mathematics for Machine Learning
Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
Total Pages: 392
Release: 2020-04-23
Genre: Computers
ISBN: 1108569323

Download Mathematics for Machine Learning Book in PDF, ePub and Kindle

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.


Machine Learning for Asset Managers

Machine Learning for Asset Managers
Author: Marcos M. López de Prado
Publisher: Cambridge University Press
Total Pages: 152
Release: 2020-04-22
Genre: Business & Economics
ISBN: 1108879721

Download Machine Learning for Asset Managers Book in PDF, ePub and Kindle

Successful investment strategies are specific implementations of general theories. An investment strategy that lacks a theoretical justification is likely to be false. Hence, an asset manager should concentrate her efforts on developing a theory rather than on backtesting potential trading rules. The purpose of this Element is to introduce machine learning (ML) tools that can help asset managers discover economic and financial theories. ML is not a black box, and it does not necessarily overfit. ML tools complement rather than replace the classical statistical methods. Some of ML's strengths include (1) a focus on out-of-sample predictability over variance adjudication; (2) the use of computational methods to avoid relying on (potentially unrealistic) assumptions; (3) the ability to "learn" complex specifications, including nonlinear, hierarchical, and noncontinuous interaction effects in a high-dimensional space; and (4) the ability to disentangle the variable search from the specification search, robust to multicollinearity and other substitution effects.


Elements of Deep Learning for Computer Vision

Elements of Deep Learning for Computer Vision
Author: Bharat Sikka
Publisher: BPB Publications
Total Pages: 224
Release: 2021-06-24
Genre: Computers
ISBN: 9390684684

Download Elements of Deep Learning for Computer Vision Book in PDF, ePub and Kindle

Conceptualizing deep learning in computer vision applications using PyTorch and Python libraries. KEY FEATURES ● Covers a variety of computer vision projects, including face recognition and object recognition such as Yolo, Faster R-CNN. ● Includes graphical representations and illustrations of neural networks and teaches how to program them. ● Includes deep learning techniques and architectures introduced by Microsoft, Google, and the University of Oxford. DESCRIPTION Elements of Deep Learning for Computer Vision gives a thorough understanding of deep learning and provides highly accurate computer vision solutions while using libraries like PyTorch. This book introduces you to Deep Learning and explains all the concepts required to understand the basic working, development, and tuning of a neural network using Pytorch. The book then addresses the field of computer vision using two libraries, including the Python wrapper/version of OpenCV and PIL. After establishing and understanding both the primary concepts, the book addresses them together by explaining Convolutional Neural Networks(CNNs). CNNs are further elaborated using top industry standards and research to explain how they provide complicated Object Detection in images and videos, while also explaining their evaluation. Towards the end, the book explains how to develop a fully functional object detection model, including its deployment over APIs. By the end of this book, you are well-equipped with the role of deep learning in the field of computer vision along with a guided process to design deep learning solutions. WHAT YOU WILL LEARN ● Get to know the mechanism of deep learning and how neural networks operate. ● Learn to develop a highly accurate neural network model. ● Access to rich Python libraries to address computer vision challenges. ● Build deep learning models using PyTorch and learn how to deploy using the API. ● Learn to develop Object Detection and Face Recognition models along with their deployment. WHO THIS BOOK IS FOR This book is for the readers who aspire to gain a strong fundamental understanding of how to infuse deep learning into computer vision and image processing applications. Readers are expected to have intermediate Python skills. No previous knowledge of PyTorch and Computer Vision is required. TABLE OF CONTENTS 1. An Introduction to Deep Learning 2. Supervised Learning 3. Gradient Descent 4. OpenCV with Python 5. Python Imaging Library and Pillow 6. Introduction to Convolutional Neural Networks 7. GoogLeNet, VGGNet, and ResNet 8. Understanding Object Detection 9. Popular Algorithms for Object Detection 10. Faster RCNN with PyTorch and YoloV4 with Darknet 11. Comparing Algorithms and API Deployment with Flask 12. Applications in Real World


Foundations of Machine Learning, second edition

Foundations of Machine Learning, second edition
Author: Mehryar Mohri
Publisher: MIT Press
Total Pages: 505
Release: 2018-12-25
Genre: Computers
ISBN: 0262351366

Download Foundations of Machine Learning, second edition Book in PDF, ePub and Kindle

A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.