Electrothermal Regeneration Of Activated Carbon Fiber Cloth With Adsorbed Volatile Organic Compounds PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Electrothermal Regeneration Of Activated Carbon Fiber Cloth With Adsorbed Volatile Organic Compounds PDF full book. Access full book title Electrothermal Regeneration Of Activated Carbon Fiber Cloth With Adsorbed Volatile Organic Compounds.

Volatile Organic Compound Recovery Using Activated-Carbon Fiber-Cloth with Rapid Electrothermal Desorption

Volatile Organic Compound Recovery Using Activated-Carbon Fiber-Cloth with Rapid Electrothermal Desorption
Author:
Publisher:
Total Pages: 14
Release: 1999
Genre:
ISBN:

Download Volatile Organic Compound Recovery Using Activated-Carbon Fiber-Cloth with Rapid Electrothermal Desorption Book in PDF, ePub and Kindle

Activated-carbon fiber-cloth (ACFC) has been investigated as an alternative adsorbent to remove volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) from gas streams when compared to conventional granular activated carbons (GACs). ACFC has up to twice the adsorption capacity of GAC and is more suited to electrothermal regeneration.


Activated Carbon Fiber Cloth Electrothermal Swing Adsorption System

Activated Carbon Fiber Cloth Electrothermal Swing Adsorption System
Author:
Publisher:
Total Pages: 0
Release: 2004
Genre:
ISBN:

Download Activated Carbon Fiber Cloth Electrothermal Swing Adsorption System Book in PDF, ePub and Kindle

Capture and recovery of hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from gas streams using physical adsorption onto activated carbon fiber cloth (ACFC) is demonstrated on the bench-scale. This system is regenerated electrothermally, by passing an electric current directly through the ACFC. The adsorbate desorbs from the ACFC, rapidly condenses on the inside walls of the adsorber, and then drains from the adsorber as a pure liquid. Rapid electrothermal desorption exhibits such unique characteristics as extremely low purge gas flow rate, rapid rate of ADFC heating, rapid mass transfer kinetics inherent to ACFC, and in-vessel condensation. An existing system was scaled up 500%, and the new system was modeled using material and energy balances. ... These results allow the modeling of electrothermal desorption of organic vapors from gas streams with in-vessel condensation to optimize operating conditions of the system during regeneration of the adsorbent.


Heel Buildup During Electrothermal Regeneration of Activated Carbon Fiber Cloth

Heel Buildup During Electrothermal Regeneration of Activated Carbon Fiber Cloth
Author: Saeid Niknaddaf
Publisher:
Total Pages: 87
Release: 2015
Genre: Adsorption
ISBN:

Download Heel Buildup During Electrothermal Regeneration of Activated Carbon Fiber Cloth Book in PDF, ePub and Kindle

Adsorption is the most common method for controlling volatile organic compounds (VOCs) emission from automotive painting process. However, unwanted accumulation of adsorbate during cycling (heel buildup) is a common challenge in this process. The objective of this research is to identify the impact of regeneration conditions such as temperature, heating rate and purge flow rate on heel buildup and adsorption capacity. For this purpose, five cycle adsorption/regeneration experiments using 1,2,4-trimethylbenzene (TMB) on activated carbon fiber cloth (ACFC) were completed using resistive heating. Increasing temperature from 288 to 400°C worsened adsorbent performance, as indicated by smaller adsorption capacity and larger heel buildup. Decreasing heating rate from 100 to 5°C/min and increasing flow rate from 5 to 0.1 SLPM decreased heel buildup (by 56% and 90%, respectively) and capacity loss (by 85% and 97%, respectively). These observations are the result of carbon deposition due to thermal degradation of TMB during regeneration which is the impact of rapid adsorbent heating rates. The results of this work will help to optimize regeneration condition to allow fast desorption with minimal adsorbate decomposition.


Activated Carbon Fiber and Textiles

Activated Carbon Fiber and Textiles
Author: Jonathan Y Chen
Publisher: Woodhead Publishing
Total Pages: 364
Release: 2016-08-05
Genre: Technology & Engineering
ISBN: 0081006780

Download Activated Carbon Fiber and Textiles Book in PDF, ePub and Kindle

Activated Carbon Fiber and Textiles provides systematic coverage of the fundamentals, properties, and current and emerging applications of carbon fiber textiles in a single volume, providing industry professionals and academics working in the field with a broader understanding of these materials. Part I discusses carbon fiber principles and production, including precursors and pyrolysis, carbon fiber spinning, and carbonization and activation. Part II provides more detailed analysis of the key properties of carbon fiber textiles, including their thermal, acoustic, electrical, adsorption, and mechanical behaviors. The final section covers applications of carbon fiber such as filtration, energy protection, and energy and gas storage. Features input from an editor who is an expert in his field: Professor Jonathan Chen has a wealth of experience in the area of activated carbon fiber materials Provides systematic and comprehensive coverage of the key aspects of activated carbon fiber textiles, from their principles, processing, and properties to their industrial applications Offers up-to-date coverage of new technology for the fiber and textiles industries Covers applications such as filtration, energy protection, and energy and gas storage