Electronic Structure Of Strongly Correlated Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Electronic Structure Of Strongly Correlated Materials PDF full book. Access full book title Electronic Structure Of Strongly Correlated Materials.

Electronic Structure of Strongly Correlated Materials

Electronic Structure of Strongly Correlated Materials
Author: Vladimir Anisimov
Publisher: Springer Science & Business Media
Total Pages: 298
Release: 2010-07-23
Genre: Technology & Engineering
ISBN: 3642048269

Download Electronic Structure of Strongly Correlated Materials Book in PDF, ePub and Kindle

Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.


Electronic Structure of Strongly Correlated Materials

Electronic Structure of Strongly Correlated Materials
Author: Vladimir Anisimov
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN: 9783642048685

Download Electronic Structure of Strongly Correlated Materials Book in PDF, ePub and Kindle

Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.


Strongly Correlated Systems

Strongly Correlated Systems
Author: Adolfo Avella
Publisher: Springer Science & Business Media
Total Pages: 350
Release: 2013-04-05
Genre: Science
ISBN: 3642351069

Download Strongly Correlated Systems Book in PDF, ePub and Kindle

This volume presents, for the very first time, an exhaustive collection of those modern numerical methods specifically tailored for the analysis of Strongly Correlated Systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and material science, belong to this class of systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for other researchers in the field who appreciate consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.


Strongly Correlated Systems

Strongly Correlated Systems
Author: Adolfo Avella
Publisher: Springer
Total Pages: 0
Release: 2016-09-22
Genre: Science
ISBN: 9783662505939

Download Strongly Correlated Systems Book in PDF, ePub and Kindle

The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for any other researcher in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.


Theoretical Methods for Strongly Correlated Electrons

Theoretical Methods for Strongly Correlated Electrons
Author: David Sénéchal
Publisher: Springer Science & Business Media
Total Pages: 370
Release: 2006-05-09
Genre: Science
ISBN: 0387217177

Download Theoretical Methods for Strongly Correlated Electrons Book in PDF, ePub and Kindle

Focusing on the purely theoretical aspects of strongly correlated electrons, this volume brings together a variety of approaches to models of the Hubbard type - i.e., problems where both localized and delocalized elements are present in low dimensions. The chapters are arranged in three parts. The first part deals with two of the most widely used numerical methods in strongly correlated electrons, the density matrix renormalization group and the quantum Monte Carlo method. The second part covers Lagrangian, Functional Integral, Renormalization Group, Conformal, and Bosonization methods that can be applied to one-dimensional or weakly coupled chains. The third part considers functional derivatives, mean-field, self-consistent methods, slave-bosons, and extensions.


Dynamical Mean-Field Theory for Strongly Correlated Materials

Dynamical Mean-Field Theory for Strongly Correlated Materials
Author: Volodymyr Turkowski
Publisher: Springer Nature
Total Pages: 393
Release: 2021-04-22
Genre: Technology & Engineering
ISBN: 3030649040

Download Dynamical Mean-Field Theory for Strongly Correlated Materials Book in PDF, ePub and Kindle

​​This is the first book that provides a detailed summary of one of the most successful new condensed matter theories - dynamical mean-field theory (DMFT) - in both static and dynamical cases of systems of different sizes. DMFT is one of the most successful approaches to describe the physical properties of systems with strong electron-electron correlations such as bulk materials, multi-layers, surfaces, 2D materials and nanostructures in both metallic and insulating phases. Strongly correlated materials usually include partially-filled localized d- or f-orbitals, and DMFT takes into account crucial for these systems time-resolved interaction between electrons when they “meet” on one atom and occupy one of these orbitals. The First Part of the book covers the general formalism of DMFT as a many-body theory, followed by generalizations of the approach on the cases of finite systems and out-of-equilibrium regime. In the last Chapter of the First Part we discuss generalizations of the approach on the case when the non-local interactions are taken into account. The Second Part of the book covers methodologies of merging DMFT with ab initio static Density Functional Theory (DFT) and Time-Dependent DFT (TDDFT) approaches. Such combined DFT+DMFT and DMFT+TDDFT computational techniques allow one to include the effects of strong electron-electron correlations at the accurate ab initio level. These tools can be applied to complex multi-atom multi-orbital systems currently not accessible to DMFT. The book helps broad audiences of students and researchers from the theoretical and computational communities of condensed matter physics, material science, and chemistry to become familiar with this state-of-art approach and to use it for reaching a deeper understanding of the properties of strongly correlated systems and for synthesis of new technologically-important materials.


Lectures on the Physics of Strongly Correlated Systems XIV

Lectures on the Physics of Strongly Correlated Systems XIV
Author: Adolfo Avella
Publisher: American Institute of Physics
Total Pages: 0
Release: 2011-01-21
Genre: Technology & Engineering
ISBN: 9780735408517

Download Lectures on the Physics of Strongly Correlated Systems XIV Book in PDF, ePub and Kindle

The volume contains the lectures delivered at the XIV Training Course in the Physics of Strongly Correlated Systems, held in Vietri sul Mare (Salerno) Italy, in October 2009. The project of the meeting was to promote the formation of young scientists by means of training through research. These features are reflected in the book: the lectures are up-to-date monographs of relevant subjects in the field of Condensed Matter Physics. Contributions include: Electronic Structure of Strongly Correlated Materials (Electronic structure calculations in one-electron approximation; Hubbard model in Dynamical Mean-Field Theory (DMFT); Electronic structure calculations for real materials by LDA+DMFT method); Computational Studies of Quantum Spin Systems (Quantum spin models, their ground states and quantum phase transitions; Classical phase transitions, Monte Carlo simulations, and finite-size scaling; Exact diagonalization methods; Quantum Monte Carlo simulations and the Stochastic Series Expansion method; Survey of related computational methods); Dynamical Mean-Field Theory of Electronic Correlations in Models and Materials (Mean-field theories for many-body systems; Lattice fermions in the limit of high dimensions; Dynamical mean-field theory for correlated lattice fermions; The Mott-Hubbard Metal-Insulator Transition; Electronic correlations and disorder; Theory of electronic correlations in materials; Kinks in the dispersion of strongly correlated electron systems).


Strong Coulomb Correlations in Electronic Structure Calculations

Strong Coulomb Correlations in Electronic Structure Calculations
Author: Vladimir I Anisimov
Publisher: CRC Press
Total Pages: 332
Release: 2000-05-30
Genre: Science
ISBN: 148229687X

Download Strong Coulomb Correlations in Electronic Structure Calculations Book in PDF, ePub and Kindle

Materials where electrons show nearly localized rather than itinerant behaviour, such as the high-temperature superconducting copper oxides, or manganate oxides, are attracting interest due to their physical properties and potential applications. For these materials, the interaction between electrons, or electron correlation, plays an important rol


Electronic Transport Theories

Electronic Transport Theories
Author: Navinder Singh
Publisher: CRC Press
Total Pages: 110
Release: 2016-11-17
Genre: Science
ISBN: 131535196X

Download Electronic Transport Theories Book in PDF, ePub and Kindle

Maintaining a practical perspective, Electronic Transport Theories: From Weakly to Strongly Correlated Materials provides an integrative overview and comprehensive coverage of electronic transport with pedagogy in view. It covers traditional theories, such as the Boltzmann transport equation and the Kubo formula, along with recent theories of transport in strongly correlated materials. The understood case of electronic transport in metals is treated first, and then transport issues in strange metals are reviewed. Topics discussed are: the Drude-Lorentz theory; the traditional Bloch-Boltzmann theory and the Grüneisen formula; the Nyquist theorem and its formulation by Callen and Welton; the Kubo formalism; the Langevin equation approach; the Wölfle-Götze memory function formalism; the Kohn-Luttinger theory of transport; and some recent theories dealing with strange metals. This book is an invaluable resource for undergraduate students, post-graduate students, and researchers with a background in quantum mechanics, statistical mechanics, and mathematical methods.


Hubbard Operators in the Theory of Strongly Correlated Electrons

Hubbard Operators in the Theory of Strongly Correlated Electrons
Author: S. G. Ovchinnikov
Publisher: Imperial College Press
Total Pages: 268
Release: 2004
Genre: Science
ISBN: 9781860945977

Download Hubbard Operators in the Theory of Strongly Correlated Electrons Book in PDF, ePub and Kindle

This book provides the first systematic discourse on a very peculiarapproach to the theory of strongly correlated systems. HubbardX-operators have been known for a long time but have not been widelyused because of their awkward algebra. The book shows that it ispossible to deal with X-operators even in the general multilevel localeigenstate system, and not just in the case of the nondegenerateHubbard model. X-operators provide the natural language for describingquasiparticles in the Hubbard subbands with unusual doping andtemperature-dependent band structures.