Electron Transport In Quantum Dots PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Electron Transport In Quantum Dots PDF full book. Access full book title Electron Transport In Quantum Dots.

Electron Transport in Quantum Dots

Electron Transport in Quantum Dots
Author: Jonathan P. Bird
Publisher: Springer Science & Business Media
Total Pages: 481
Release: 2013-11-27
Genre: Science
ISBN: 1461504376

Download Electron Transport in Quantum Dots Book in PDF, ePub and Kindle

When I was contacted by Kluwer Academic Publishers in the Fall of 200 I, inviting me to edit a volume of papers on the issue of electron transport in quantum dots, I was excited by what I saw as an ideal opportunity to provide an overview of a field of research that has made significant contributions in recent years, both to our understanding of fundamental physics, and to the development of novel nanoelectronic technologies. The need for such a volume seemed to be made more pressing by the fact that few comprehensive reviews of this topic have appeared in the literature, in spite of the vast activity in this area over the course of the last decade or so. With this motivation, I set out to try to compile a volume that would fairly reflect the wide range of opinions that has emerged in the study of electron transport in quantum dots. Indeed, there has been no effort on my part to ensure any consistency between the different chapters, since I would prefer that this volume instead serve as a useful forum for the debate of critical issues in this still developing field. In this matter, I have been assisted greatly by the excellent series of articles provided by the different authors, who are widely recognized as some of the leaders in this vital area of research.


Electron Transport in Quantum Dots

Electron Transport in Quantum Dots
Author: Jonathan P. Bird
Publisher:
Total Pages: 488
Release: 2014-09-01
Genre:
ISBN: 9781461504382

Download Electron Transport in Quantum Dots Book in PDF, ePub and Kindle


Quantum Dots

Quantum Dots
Author: Alexander Tartakovskii
Publisher: Cambridge University Press
Total Pages: 377
Release: 2012-07-19
Genre: Science
ISBN: 1107012589

Download Quantum Dots Book in PDF, ePub and Kindle

A comprehensive review of cutting-edge solid state research, focusing on quantum dot nanostructures, for graduate students and researchers.


Mesoscopic Electron Transport

Mesoscopic Electron Transport
Author: Lydia L. Sohn
Publisher: Springer Science & Business Media
Total Pages: 680
Release: 2013-06-29
Genre: Science
ISBN: 9401588392

Download Mesoscopic Electron Transport Book in PDF, ePub and Kindle

Ongoing developments in nanofabrication technology and the availability of novel materials have led to the emergence and evolution of new topics for mesoscopic research, including scanning-tunnelling microscopic studies of few-atom metallic clusters, discrete energy level spectroscopy, the prediction of Kondo-type physics in the transport properties of quantum dots, time dependent effects, and the properties of interacting systems, e.g. of Luttinger liquids. The overall understanding of each of these areas is still incomplete; nevertheless, with the foundations laid by studies in the more traditional systems there is no doubt that these new areas will advance mesoscopic electron transport to a new phenomenological level, both experimentally and theoretically. Mesoscopic Electron Transport highlights selected areas in the field, provides a comprehensive review of such systems, and also serves as an introduction to the new and developing areas of mesoscopic electron transport.


Nonequilibrium Electron Transport in Quantum Dot and Quantum Point Contact Systems

Nonequilibrium Electron Transport in Quantum Dot and Quantum Point Contact Systems
Author: Anasuya Erin Krishnaswamy
Publisher:
Total Pages: 286
Release: 1999
Genre: Electron transport
ISBN:

Download Nonequilibrium Electron Transport in Quantum Dot and Quantum Point Contact Systems Book in PDF, ePub and Kindle

Much experimental research has been performed in the equilibrium regime on individual quantum dots and quantum point contacts (QPCs). The focus of the research presented here is electron transport in the nonequilibrium regime in coupled quantum dot and QPC systems fabricated on AlGaAs/GaAs material using the split gate technique. Near equilibrium magnetoconductance measurements were performed on a quantum dot and a QPC. Oscillations were seen in the conductance of the sensor which corresponded to Aharonov-Bohm oscillations in the quantum dot, to our knowledge the first such observation. Sudden jumps in the conductance of the QPC were observed under certain gate biases and under certain magnetic fields. When the gate biases and magnetic field were held constant and the conductance was observed over time, switching was observed with the form of a random telegraph signal (RTS). RTS switching is usually attributed to charging of a single impurity. However, in this case switching may have been due to tunneling via edge states in the dot. Nonequilibrium transport in single quantum dots was investigated. A knee or kink was observed in the current-voltage characteristics of two dots on different material. The bias conditions under which the knee occurred point to electron heating as the physical mechanism for the observed behavior. However, the data can not be fit accurately over all bias ranges with an energy balance hot electron model. Modifications to the model are needed to accurately represent the devices studied here. Finally, the effect of nonlinear transport through a one dimensional (1D) QPC on the equilibrium conductance of an adjacent OD quantum dot was explored. This was the first attempt to observe Coulomb drag between a OD and 1D system. It was observed that the equilibrium conductance peaks in the quantum dot were broadened as the current in the QPC increased. This apparent electron heating effect in the dot can be explained by a simple ballistic phonon model. However, reasonable phase coherence times can be estimated from peak fitting using a Breit- Wigner formula which points to a Coulomb interaction. More detailed numerical calculations should illuminate the dominant scattering processes.


Electronic Quantum Transport in Mesoscopic Semiconductor Structures

Electronic Quantum Transport in Mesoscopic Semiconductor Structures
Author: Thomas Ihn
Publisher: Springer Science & Business Media
Total Pages: 267
Release: 2004-01-08
Genre: Science
ISBN: 0387400966

Download Electronic Quantum Transport in Mesoscopic Semiconductor Structures Book in PDF, ePub and Kindle

Opening with a brief historical account of electron transport from Ohm's law through transport in semiconductor nanostructures, this book discusses topics related to electronic quantum transport. The book is written for graduate students and researchers in the field of mesoscopic semiconductors or in semiconductor nanostructures. Highlights include review of the cryogenic scanning probe techniques applied to semiconductor nanostructures.