Electron Atom Collisions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Electron Atom Collisions PDF full book. Access full book title Electron Atom Collisions.

Theory of Electron—Atom Collisions

Theory of Electron—Atom Collisions
Author: Philip G. Burke
Publisher: Springer Science & Business Media
Total Pages: 264
Release: 2013-06-29
Genre: Science
ISBN: 1489915672

Download Theory of Electron—Atom Collisions Book in PDF, ePub and Kindle

The authors aim to hone the theory of electron-atom and electron-ion collisions by developing mathematical equations and comparing their results to the wealth of recent experimental data. This first of three parts focuses on potential scattering, and will serve as an introduction to many of the concepts covered in Parts II and III. As these processes occur in so many of the physical sciences, researchers in astrophysics, atmospheric physics, plasma physics, and laser physics will all benefit from the monograph.


Electron–Atom Collisions

Electron–Atom Collisions
Author: Maurizio Dapor
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 194
Release: 2022-03-07
Genre: Science
ISBN: 3110675374

Download Electron–Atom Collisions Book in PDF, ePub and Kindle

Electron collisions with atoms, ions, and molecules have been investigated since the earliest years of the last century because of their pervasiveness and importance in fields ranging from astrophysics and plasma physics to atmospheric and condensed matter physics. Written in an accessible yet rigorous style, this book introduces the theory of electron-atom scattering in a quantum-relativistic framework.


Collisions of Electrons with Atoms and Molecules

Collisions of Electrons with Atoms and Molecules
Author: G.F. Drukarev
Publisher: Springer Science & Business Media
Total Pages: 252
Release: 2012-12-06
Genre: Science
ISBN: 1461317797

Download Collisions of Electrons with Atoms and Molecules Book in PDF, ePub and Kindle

This book is a short outline of the present state of the theory of electron collisions with atomic particles - atoms, molecules and ions. It is addressed to those who by nature of their work need detailed information about the cross sections of various processes of electron collisions with atomic particles: experimentalists working in plasma physics, optics, quantum electronics, atmospheric and space physics, 'etc. Some of the cross sections have been measured. But in many important cases the only source of information is theoretical calcu lation. The numerous theoretical papers dealing with electronic collision processes contain various approximations. The inter relation between them and the level of their accuracy is often diffi cult to understand without a systematic study of the theory of atomic collisions, not to mention that theoretical considerations are necessary for the consistent interpretation of experimental results. The main constituents of the book are: 1. General theory with special emphasis on the topics most impor tant for understanding and discussing electron collisions with atomic particles.


Introduction to the Theory of Collisions of Electrons with Atoms and Molecules

Introduction to the Theory of Collisions of Electrons with Atoms and Molecules
Author: S.P. Khare
Publisher: Springer Science & Business Media
Total Pages: 362
Release: 2012-12-06
Genre: Science
ISBN: 1461506115

Download Introduction to the Theory of Collisions of Electrons with Atoms and Molecules Book in PDF, ePub and Kindle

An understanding of the collisions between micro particles is of great importance for the number of fields belonging to physics, chemistry, astrophysics, biophysics etc. The present book, a theory for electron-atom and molecule collisions is developed using non-relativistic quantum mechanics in a systematic and lucid manner. The scattering theory is an essential part of the quantum mechanics course of all universities. During the last 30 years, the author has lectured on the topics presented in this book (collisions physics, photon-atom collisions, electron-atom and electron-molecule collisions, "electron-photon delayed coincidence technique", etc.) at many institutions including Wayne State University, Detroit, MI, The University of Western Ontario, Canada, and The Meerut University, India. The present book is the outcome of those lectures and is written to serve as a textbook for post-graduate and pre-PhD students and as a reference book for researchers.


Electron-Molecule Collisions

Electron-Molecule Collisions
Author: Isao Shimamura
Publisher: Springer Science & Business Media
Total Pages: 578
Release: 2013-11-11
Genre: Science
ISBN: 1461323576

Download Electron-Molecule Collisions Book in PDF, ePub and Kindle

Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiation physics, the physics of gas discharges, magnetohydrodynamic power generation, and so on. This book aims at introducing the reader to the problem of electron molecule collisions, elucidating the physics behind the phenomena, and review ing, to some extent, up-to-date important results. This book should be appropri ate for graduate reading in physics and chemistry. We also believe that investi gators in atomic and molecular physics will benefit much from this book.


Electron Emission in Heavy Ion-Atom Collisions

Electron Emission in Heavy Ion-Atom Collisions
Author: Nikolaus Stolterfoht
Publisher: Springer Science & Business Media
Total Pages: 250
Release: 2013-06-29
Genre: Science
ISBN: 3662034808

Download Electron Emission in Heavy Ion-Atom Collisions Book in PDF, ePub and Kindle

Electron EM reviews the theoretical and experimental work of the last 30 years on continuous electron emission in energetic ion-atom collisions. High incident energies for which the projectile is faster than the mean orbital velocity of the active electron are considered. Emphasis is placed on the interpretation of ionization mechanisms. They are interpreted in terms of Coulomb centers associated with the projectile and target nuclear fields which strongly interact with the outgoing electron. General properties of the two-center electron emission are analyzed. Particular attention is given to screening effects. A brief overview of multiple ionization processes is also presented. The survey concludes with a complete compilation of experimental studies of ionization cross sections.


Computational Methods for Electron—Molecule Collisions

Computational Methods for Electron—Molecule Collisions
Author: Franco A. Gianturco
Publisher: Springer Science & Business Media
Total Pages: 374
Release: 2013-06-29
Genre: Science
ISBN: 1475797974

Download Computational Methods for Electron—Molecule Collisions Book in PDF, ePub and Kindle

The collision of electrons with molecules and molecular ions is a fundamental pro cess in atomic and molecular physics and in chemistry. At high incident electron en ergies, electron-molecule collisions are used to deduce molecular geometries, oscillator strengths for optically allowed transitions, and in the case of electron-impact ionization, to probe the momentum distribution of the molecule itself. When the incident electron energy is comparable to or below those of the molecular valence electrons, the physics involved is particularly rich. Correlation and exchange effects necessary to describe such collision processes bear a close resemblance to similar efft:cts in the theory of electronic structure in molecules. Compound state formations, in the form of resonances and vir tual states, manifest themselves in experimental observables which provide details of the electron-molecule interactions. Ro-vibrational excitations by low-energy electron collisions exemplify energy transfer between the electronic and nuclear motion. The role of nonadiabatic interaction is raised here. When the final vibrational state is in the continuum, molecular dissociation occurs. Dissociative recombination and dissociative attachment are examples of such fragmentation processes. In addition to its fundamental nature, the study of electron-molecule collisions is also motivated by its relation to other fields of study and by its technological appli cations. The study of planetary atmospheres and the interstellar medium necessarily involve collision processes of electrons with molecules and molecular ions.


Polarization and Correlation Phenomena in Atomic Collisions

Polarization and Correlation Phenomena in Atomic Collisions
Author: Vsevolod V. Balashov
Publisher: Springer Science & Business Media
Total Pages: 258
Release: 2000-04-30
Genre: Science
ISBN: 9780306462665

Download Polarization and Correlation Phenomena in Atomic Collisions Book in PDF, ePub and Kindle

"The book provides a concise description of the density matrix and statistical tensor formalism and presents a general approach to the description of angular correlation and polarization phenomena. It illustrate an application of the angular momentum technique to a broad variety of atomic processes.".


An Introduction to the Atomic and Radiation Physics of Plasmas

An Introduction to the Atomic and Radiation Physics of Plasmas
Author: G. J. Tallents
Publisher: Cambridge University Press
Total Pages: 313
Release: 2018-02-22
Genre: Science
ISBN: 1108419542

Download An Introduction to the Atomic and Radiation Physics of Plasmas Book in PDF, ePub and Kindle

The physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas is developed from first principles and applied across various fields, from quantum mechanics, electricity and magnetism, to statistical physics. This text links undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research.


Lecture Notes on Principles of Plasma Processing

Lecture Notes on Principles of Plasma Processing
Author: Francis F. Chen
Publisher: Springer Science & Business Media
Total Pages: 213
Release: 2012-12-06
Genre: Science
ISBN: 1461501814

Download Lecture Notes on Principles of Plasma Processing Book in PDF, ePub and Kindle

Plasma processing of semiconductors is an interdisciplinary field requiring knowledge of both plasma physics and chemical engineering. The two authors are experts in each of these fields, and their collaboration results in the merging of these fields with a common terminology. Basic plasma concepts are introduced painlessly to those who have studied undergraduate electromagnetics but have had no previous exposure to plasmas. Unnecessarily detailed derivations are omitted; yet the reader is led to understand in some depth those concepts, such as the structure of sheaths, that are important in the design and operation of plasma processing reactors. Physicists not accustomed to low-temperature plasmas are introduced to chemical kinetics, surface science, and molecular spectroscopy. The material has been condensed to suit a nine-week graduate course, but it is sufficient to bring the reader up to date on current problems such as copper interconnects, low-k and high-k dielectrics, and oxide damage. Students will appreciate the web-style layout with ample color illustrations opposite the text, with ample room for notes. This short book is ideal for new workers in the semiconductor industry who want to be brought up to speed with minimum effort. It is also suitable for Chemical Engineering students studying plasma processing of materials; Engineers, physicists, and technicians entering the semiconductor industry who want a quick overview of the use of plasmas in the industry.