Electromagnetic Field Theory For Engineers And Physicists PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Electromagnetic Field Theory For Engineers And Physicists PDF full book. Access full book title Electromagnetic Field Theory For Engineers And Physicists.

Electromagnetic Field Theory for Engineers and Physicists

Electromagnetic Field Theory for Engineers and Physicists
Author: Günther Lehner
Publisher: Springer Science & Business Media
Total Pages: 687
Release: 2010-02-05
Genre: Technology & Engineering
ISBN: 3540763066

Download Electromagnetic Field Theory for Engineers and Physicists Book in PDF, ePub and Kindle

Discussed is the electromagnetic field theory and its mathematical methods. Maxwell’s equations are presented and explained. It follows a detailed discussion of electrostatics, flux, magnetostatics, quasi stationary fields and electromagnetic fields. The author presents how to apply numerical methods like finite differences, finite elements, boundary elements, image charge methods, and Monte-Carlo methods to field theory problems. He offers an outlook on fundamental issues in physics including quantum mechanics. Some of these issues are still unanswered questions. A chapter dedicated to the theory of special relativity, which allows to simplify a number of field theory problems, complements this book. A book whose usefulness is not limited to engineering students, but can be very helpful for physicists and other branches of science.


Electromagnetic Field Theory

Electromagnetic Field Theory
Author: Gerd Mrozynski
Publisher: Springer Science & Business Media
Total Pages: 283
Release: 2012-07-06
Genre: Technology & Engineering
ISBN: 3834821780

Download Electromagnetic Field Theory Book in PDF, ePub and Kindle

After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems.


Physics

Physics
Author: A. B. Bhattacharya
Publisher: KHANNA PUBLISHING HOUSE
Total Pages: 300
Release: 2021-08-27
Genre: Science
ISBN: 9391505163

Download Physics Book in PDF, ePub and Kindle

Physics: Introduction to Electromagnetic Theory has been written for the first-year students of B. Tech Engineering Degree Courses of all Indian Universities following the guideline and syllabus as recommended by AICTE. The book, written in a very simple and lucid way, will be very much helpful to reinforce understanding of different aspects to meet the engineering student’s needs. Writing a text-cum manual of this category poses several challenges providing enough content without sacrificing the essentials, highlighting the key features, presenting in a novel format and building informative assessment. This book on engineering physics will prepare students to apply the knowledge of Electromagnetic Theory to tackle 21st century and onward engineering challenges and address the related questions. Some salient features of the book: · Expose basic science to the engineering students to the fundamentals of physics and to enable them to get an insight of the subject · To develop knowledge on critical questions solved and supplementary problems covering all types of medium and advanced level problems in a very logical and systematic manner · Some essential information for the users under the heading “Know more” for clarifying some basic information as well as comprehensive synopsis of formulae for a quick revision of the basic principles · Constructive manner of presentation so that an Engineering degree students can prepare to work in different sectors or in national laboratories at the very forefront of technology


Electromagnetic Theory and Plasmonics for Engineers

Electromagnetic Theory and Plasmonics for Engineers
Author: Liudmila Nickelson
Publisher: Springer
Total Pages: 749
Release: 2018-11-24
Genre: Technology & Engineering
ISBN: 9811323526

Download Electromagnetic Theory and Plasmonics for Engineers Book in PDF, ePub and Kindle

This book presents the theory of electromagnetic (EM) waves for upper undergraduate, graduate and PhD-level students in engineering. It focuses on physics and microwave theory based on Maxwell’s equations and the boundary conditions important for studying the operation of waveguides and resonators in a wide frequency range, namely, from approx. 10**9 to 10**16 hertz. The author also highlights various current topics in EM field theory, such as plasmonic (comprising a noble metal) waveguides and analyses of attenuations by filled waveguide dielectrics or semiconductors and also by conducting waveguide walls. Featuring a wide variety of illustrations, the book presents the calculated and schematic distributions of EM fields and currents in waveguides and resonators. Further, test questions are presented at the end of each chapter.


Electromagnetic Field Theory

Electromagnetic Field Theory
Author: Harish Parthasarathy
Publisher: I. K. International Pvt Ltd
Total Pages: 374
Release: 2003-08-06
Genre:
ISBN: 9788188237098

Download Electromagnetic Field Theory Book in PDF, ePub and Kindle

Development of the subject in the book follows an order of increasing complexity. It is useful for the undergraduate level students of electronics engineering as well as postgraduate level students of engineering physics wanting to take up problems in the interface of electromagnetism and quantum mechanics. It discusses: * Gauss' and Stokes' theorems. * Gauss' and Coulomb's laws of electrostatics developed in both integral and differential frameworks. * Computation of static electric and magnetic field for various situations. * Green's function method for the solution of boundary value problems. * Problems involving computataion of the emf for conductors moving in magnetic fields. * Derivation of the 3-D wave equations and Snell's laws of reflection and refraction. * Schrodinger's wave mechanics.


Faraday, Maxwell, and the Electromagnetic Field

Faraday, Maxwell, and the Electromagnetic Field
Author: Nancy Forbes
Publisher: Prometheus Books
Total Pages: 330
Release: 2014-03-11
Genre: Science
ISBN: 1616149434

Download Faraday, Maxwell, and the Electromagnetic Field Book in PDF, ePub and Kindle

The story of two brilliant nineteenth-century scientists who discovered the electromagnetic field, laying the groundwork for the amazing technological and theoretical breakthroughs of the twentieth century Two of the boldest and most creative scientists of all time were Michael Faraday (1791-1867) and James Clerk Maxwell (1831-1879). This is the story of how these two men - separated in age by forty years - discovered the existence of the electromagnetic field and devised a radically new theory which overturned the strictly mechanical view of the world that had prevailed since Newton's time. The authors, veteran science writers with special expertise in physics and engineering, have created a lively narrative that interweaves rich biographical detail from each man's life with clear explanations of their scientific accomplishments. Faraday was an autodidact, who overcame class prejudice and a lack of mathematical training to become renowned for his acute powers of experimental observation, technological skills, and prodigious scientific imagination. James Clerk Maxwell was highly regarded as one of the most brilliant mathematical physicists of the age. He made an enormous number of advances in his own right. But when he translated Faraday's ideas into mathematical language, thus creating field theory, this unified framework of electricity, magnetism and light became the basis for much of later, 20th-century physics. Faraday's and Maxwell's collaborative efforts gave rise to many of the technological innovations we take for granted today - from electric power generation to television, and much more. Told with panache, warmth, and clarity, this captivating story of their greatest work - in which each played an equal part - and their inspiring lives will bring new appreciation to these giants of science.


Theory and Computation of Electromagnetic Fields

Theory and Computation of Electromagnetic Fields
Author: Jian-Ming Jin
Publisher: John Wiley & Sons
Total Pages: 744
Release: 2015-08-10
Genre: Science
ISBN: 111910808X

Download Theory and Computation of Electromagnetic Fields Book in PDF, ePub and Kindle

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.


Electromagnetism

Electromagnetism
Author: John C. Slater
Publisher: Courier Corporation
Total Pages: 258
Release: 2012-03-09
Genre: Science
ISBN: 0486150402

Download Electromagnetism Book in PDF, ePub and Kindle

A basic introduction to electromagnetism, supplying the fundamentals of electrostatics and magnetostatics, in addition to a thorough investigation of electromagnetic theory. Numerous problems and references. Calculus and differential equations required. 1947 edition.


A Dynamical Theory of the Electromagnetic Field

A Dynamical Theory of the Electromagnetic Field
Author: James C. Maxwell
Publisher: Wipf and Stock Publishers
Total Pages: 119
Release: 1996-12-03
Genre: Religion
ISBN: 1579100155

Download A Dynamical Theory of the Electromagnetic Field Book in PDF, ePub and Kindle

"We owe Clerk Maxwell the precise formulation of the space-time laws of electromagnetic fields. Imagine his own feelings when the partial differential equations he formulated spread in the form of polarized waves with the speed of light! This change in the understanding of the structure of reality is the most profound and fruitful that has come to physics since Newton."--Albert Einstein


Metamaterials

Metamaterials
Author: Nader Engheta
Publisher: John Wiley & Sons
Total Pages: 438
Release: 2006-06-23
Genre: Technology & Engineering
ISBN: 0471784184

Download Metamaterials Book in PDF, ePub and Kindle

Leading experts explore the exotic properties and exciting applications of electromagnetic metamaterials Metamaterials: Physics and Engineering Explorations gives readers a clearly written, richly illustrated introduction to the most recent research developments in the area of electromagnetic metamaterials. It explores the fundamental physics, the designs, and the engineering aspects, and points to a myriad of exciting potential applications. The editors, acknowledged leaders in the field of metamaterials, have invited a group of leading researchers to present both their own findings and the full array of state-of-the-art applications for antennas, waveguides, devices, and components. Following a brief overview of the history of artificial materials, the publication divides its coverage into two major classes of metamaterials. The first half of the publication examines effective media with single (SNG) and double negative (DNG) properties; the second half examines electromagnetic band gap (EBG) structures. The book further divides each of these classes into their three-dimensional (3D volumetric) and two-dimensional (2D planar or surface) realizations. Examples of each type of metamaterial are presented, and their known and anticipated properties are reviewed. Collectively, Metamaterials: Physics and Engineering Explorations presents a review of recent research advances associated with a highly diverse set of electromagnetic metamaterials. Its multifaceted approach offers readers a combination of theoretical, numerical, and experimental perspectives for a better understanding of their behaviors and their potentialapplications in components, devices, and systems. Extensive reference lists provide opportunities to explore individual topics and classes of metamaterials in greater depth. With full-color illustrations throughout to clarify concepts and help visualize actual results, this book provides a dynamic, user-friendly resource for students, engineers, physicists, and other researchers in the areas of electromagnetic materials, microwaves, millimeter waves, and optics. It equips newcomers with a basic understanding of metamaterials and their potential applications. Advanced researchers will benefit from thought-provoking perspectives that will deepen their knowledge and lead them to new areas of investigation.