Electrical Characterization Of Transition Metals In Silicon PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Electrical Characterization Of Transition Metals In Silicon PDF full book. Access full book title Electrical Characterization Of Transition Metals In Silicon.

Electrical characterization of transition metals in silicon:

Electrical characterization of transition metals in silicon:
Author: Leopold Scheffler
Publisher: Cuvillier Verlag
Total Pages: 124
Release: 2015-04-28
Genre: Science
ISBN: 373694988X

Download Electrical characterization of transition metals in silicon: Book in PDF, ePub and Kindle

Silizium ist ein wichtiger Rohstoff unserer modernen Welt. Mikroelektronik, Sensorik und Photovoltaik sind drei wichtige Anwendungsgebiete, die aus unserem täglichen Leben heute nicht mehr wegzudenken sind. Entscheidend für all diese Anwendungen ist das Verständnis der elektrischen Eigenschaften des Materials, welche durch Defekte und Verunreinigungen beeinflusst werden. Die Übergangsmetalle sind eine wichtige Klasse von Verunreinigungen im Silizium, da sie die elektrischen Eigenschaften stark beeinflussen. Auch ist bekannt, dass Wasserstoff, welcher in vielen Prozessen in Silizium eindringen kann, mit vielen Defekten reagiert. In der vorliegenden Dissertation wird die Wechselwirkung von Wasserstoff mit den Metallen Titan, Kobalt und Nickel mit Hilfe der kapazitiven Messmethoden DLTS und MCTS untersucht. Verschiedene elektrisch aktive Metall-Wasserstoff-Komplexe können nachgewiesen werden. Auch eine Passivierung der Metalle durch Wasserstoff wird beobachtet. Neben den Reaktionen mit den Metallen wird auch eine Wechselwirkung des Wasserstoffs mit im Silizium vorhandenem Kohlenstoff untersucht. Für eine Einordnung der Ergebnisse werden diese mit dem aus der Literatur bekannten Verhalten benachbarter Elemente verglichen.


Metal Impurities in Silicon- and Germanium-Based Technologies

Metal Impurities in Silicon- and Germanium-Based Technologies
Author: Cor Claeys
Publisher: Springer
Total Pages: 464
Release: 2018-08-13
Genre: Technology & Engineering
ISBN: 3319939254

Download Metal Impurities in Silicon- and Germanium-Based Technologies Book in PDF, ePub and Kindle

This book provides a unique review of various aspects of metallic contamination in Si and Ge-based semiconductors. It discusses all of the important metals including their origin during crystal and/or device manufacturing, their fundamental properties, their characterization techniques and their impact on electrical devices’ performance. Several control and possible gettering approaches are addressed. The book offers a valuable reference guide for all researchers and engineers studying advanced and state-of-the-art micro- and nano-electronic semiconductor devices and circuits. Adopting an interdisciplinary approach, it combines perspectives from e.g. material science, defect engineering, device processing, defect and device characterization, and device physics and engineering.


Electrical Characterization of Transition Metal Silicide Nanostructures Using Variable Temperature Scanning Probe Microscopy

Electrical Characterization of Transition Metal Silicide Nanostructures Using Variable Temperature Scanning Probe Microscopy
Author: Joseph Leo Tedesco
Publisher:
Total Pages: 211
Release: 2007
Genre:
ISBN:

Download Electrical Characterization of Transition Metal Silicide Nanostructures Using Variable Temperature Scanning Probe Microscopy Book in PDF, ePub and Kindle

Keywords: CoSi2, titanium silicide, TiSi2, transition metal, silicide, scanning probe microscopy, Fermi level pinning, cobalt silicide, Si(100), Si(111), silicon, titanium, cobalt, electrical characterization, c-AFM, conducting atomic force microscopy, AFM, atomic force microscopy, STM, scanning tunneling microscopy, variable temperature, Schottky barrier, Coulomb blockade, I-V, variable temperature, Coulomb staircase, I-V-T, barrier lowering, single electron tunneling.


Electrical Characterization of Metal-to-insulator Transition in Iron Silicide Thin Films on Sillicone Substrates

Electrical Characterization of Metal-to-insulator Transition in Iron Silicide Thin Films on Sillicone Substrates
Author: Hasitha C. Weerasinghe
Publisher:
Total Pages:
Release: 2006
Genre:
ISBN:

Download Electrical Characterization of Metal-to-insulator Transition in Iron Silicide Thin Films on Sillicone Substrates Book in PDF, ePub and Kindle

ABSTRACT: Iron Silicide (FeSi) films deposited on silicon substrates with the native SiO2 layer have shown a Metal-to-Insulator Transition (MIT) of more than four order of magnitude change in resistance. Modification of the SiO2/Si interface due to Fe diffusion has been attributed to the formation of this effect. In this research a systematic experimental investigation has been carried out to study the effect of the growth parameters and substrate doping type in the transition. In addition, transport properties of continuous and discontinuous films have been investigated to understand the mechanism of this metal-to-insulator transition. Four probe measurements of films deposited in p- and n-type doped Si substrates with resistivity in the range of 1-10 Omega cm showed similar temperature dependent resistance behavior with transition onsets at 250 K and 300 K respectively. These results indicate that the current transport takes place via tunneling through the SiO2 layer into the Si substrate up to the transition temperature. Current appears to switch to the film after the transition point due to the development of high interface resistance. Discontinuous FeSi films on silicon substrates showed similar resistance behavior ruling out possibility of current transport through inversion layer at the SiO2/Si interface. To investigate the role of the magnetic ion Fe, transport measurements of FeSi films were compared with those of non-magnetic metals such as Platinum (Pt) and Aluminum (Al). Absence of Metal-to-insulator transition on Pt and Al films show that the presence of magnetic moment is required for this transition. Temperature dependent Hall voltage measurements were carried out to identify the carrier type through the substrate for FeSi films deposited on p- and n-type Si substrates. Results of Hall voltage measurements proved that the type of conductivity flips from majority carriers to minority after the transition. Metal-to-insulating transition behavior of FeSi films depending on different laser fluences has been also investigated. Our results revealed as laser fluence is increased observed transition of the FeSi films reduces rapidly showing a highest magnitude of transition of about 1 M Omega for the films deposited with lowest laser fluence (0.64 J/cm2) and a lowest of about 10 Omega for the films deposited with highest laser fluence (3.83 J/cm2). Ion probe measurements indicated that the average kinetic energy of the ablated ion in the plume is considerably increased with the increase of the laser fluence. Consequently, magnitude drop in the transition can be considered due to the deeper penetration on Fe ion through the SiO2 layer. Thickness dependence study carried out for FeSi films deposited with high and low laser fluencies indicated transition slightly drops as thickness is increased, concluding the current transportation through the film becomes dominant after the transition temperature.


Materials and Process Characterization

Materials and Process Characterization
Author: Norman G. Einspruch
Publisher: Academic Press
Total Pages: 614
Release: 2014-12-01
Genre: Technology & Engineering
ISBN: 1483217736

Download Materials and Process Characterization Book in PDF, ePub and Kindle

VLSI Electronics: Microstructure Science, Volume 6: Materials and Process Characterization addresses the problem of how to apply a broad range of sophisticated materials characterization tools to materials and processes used for development and production of very large scale integration (VLSI) electronics. This book discusses the various characterization techniques, such as Auger spectroscopy, secondary ion mass spectroscopy, X-ray topography, transmission electron microscopy, and spreading resistance. The systematic approach to the technologies of VLSI electronic materials and device manufacture are also considered. This volume is beneficial to materials scientists, chemists, and engineers who are commissioned with the responsibility of developing and implementing the production of materials and devices to support the VLSI era.


Synthesis and Characterization of the 2-Dimensional Transition Metal Dichalcogenides

Synthesis and Characterization of the 2-Dimensional Transition Metal Dichalcogenides
Author:
Publisher:
Total Pages: 121
Release: 2017
Genre: Atomic layer deposition
ISBN:

Download Synthesis and Characterization of the 2-Dimensional Transition Metal Dichalcogenides Book in PDF, ePub and Kindle

In the last 50 years, the semiconductor industry has been scaling the silicon transistor to achieve faster devices, lower power consumption, and improve device performance. Transistor gate dimensions have become so small that short channel effects and gate leakage have become a significant problem. To address these issues, performance enhancement techniques such as strained silicon are used to improve mobility, while new high-k gate dielectric materials replace silicon oxide to reduce gate leakage. At some point the fundamental limit of silicon will be reached and the semiconductor industry will need to find an alternate solution. The advent of graphene led to the discovery of other layered materials such as the transition metal dichalcogenides. These materials have a layered structure similar to graphene and therefore possess some of the same qualities, but unlike graphene, these materials possess sizeable bandgaps between 1-2 eV making them useful for digital electronic applications. Since initially discovered, most of the research on these films has been from mechanically exfoliated flakes, which are easily produced due to the weak van der Waals force binding the layers together. For these materials to be considered for use in mainstream semiconductor technology, methods need to be explored to grow these films uniformly over a large area. In this research, atomic layer deposition (ALD) was employed as the growth technique used to produce large area uniform thin films of several different transition metal dichalcogenides. By optimizing the ALD growth parameters, it is possible to grow high quality films a few to several monolayers thick over a large area with good uniformity. This has been demonstrated and verified using several physical analytical tests such as Raman spectroscopy, photoluminescence, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron spectroscopy, and scanning electron microscopy, which show that these films possess the same qualities as those of the mechanically exfoliated films. Back-gated field effect transistors were created and electrical characterization was performed to determine if ALD grown films possess the same electronic properties as films produced from other methods. The tests revealed that the ALD grown films have high field effect mobility and high current on/off ratios. The WSe2 films also exhibited ambipolar electrical behavior making them a possible candidate for complementary metal-oxide semiconductor (CMOS) technology. Ab-initio density functional theory calculations were performed and compared to experimental properties of MoS2 and WSe2 films, which show that the ALD films grown in this research match theoretical predictions. The transconductance measurements from the WSe2 devices used, matched very well with the theoretical calculations, bridging the gap between experimental data and theoretical predictions. Based upon this research, ALD growth of TMD films proves to be a viable alternative for silicon based digital electronics.


Electrical Characterization of Silicon-on-Insulator Materials and Devices

Electrical Characterization of Silicon-on-Insulator Materials and Devices
Author: Sorin Cristoloveanu
Publisher: Springer Science & Business Media
Total Pages: 389
Release: 2013-11-27
Genre: Technology & Engineering
ISBN: 1461522455

Download Electrical Characterization of Silicon-on-Insulator Materials and Devices Book in PDF, ePub and Kindle

Silicon on Insulator is more than a technology, more than a job, and more than a venture in microelectronics; it is something different and refreshing in device physics. This book recalls the activity and enthu siasm of our SOl groups. Many contributing students have since then disappeared from the SOl horizon. Some of them believed that SOl was the great love of their scientific lives; others just considered SOl as a fantastic LEGO game for adults. We thank them all for kindly letting us imagine that we were guiding them. This book was very necessary to many people. SOl engineers will certainly be happy: indeed, if the performance of their SOl components is not always outstanding, they can now safely incriminate the relations given in the book rather than their process. Martine, Gunter, and Y. S. Chang can contemplate at last the amount of work they did with the figures. Our SOl accomplices already know how much we borrowed from their expertise and would find it indecent to have their detailed contri butions listed. Jean-Pierre and Dimitris incited the book, while sharing their experience in the reliability of floating bodies. Our families and friends now realize the SOl capability of dielectrically isolating us for about two years in a BOX. Our kids encouraged us to start writing. Our wives definitely gave us the courage to stop writing. They had a hard time fighting the symptoms of a rapidly developing SOl allergy.