Effects Of A Wildfire On Mortality And Growth Of Young Ponderosa Pine Trees PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Effects Of A Wildfire On Mortality And Growth Of Young Ponderosa Pine Trees PDF full book. Access full book title Effects Of A Wildfire On Mortality And Growth Of Young Ponderosa Pine Trees.

Historical Wildfire Impacts on Ponderosa Pine Tree Overstories

Historical Wildfire Impacts on Ponderosa Pine Tree Overstories
Author: Peter F. Ffolliott
Publisher:
Total Pages: 28
Release: 2008
Genre: Forest fires
ISBN:

Download Historical Wildfire Impacts on Ponderosa Pine Tree Overstories Book in PDF, ePub and Kindle

The Rodeo-Chediski Wildfire--the largest in Arizona's history--damaged or destroyed ecosystem resources and disrupted ecosystem functioning in a largely mosaic pattern throughout the ponderosa pine (Pinus ponderosa) forests exposed to the burn. Impacts of this wildfire on tree overstories were studied for 5 years (2002 to 2007) on two watersheds in the area burned. One watershed was burned by a high severity (stand-replacing) fire, while the other watershed was burned by a low severity (stand-modifying) fire. In this paper, we focus on the effects of the wildfire on stand structures, post-fire mortality of fire-damaged trees, and stocking of tree reproduction. We also present a fire severity classification system based on the fire-damaged tree crowns and a retrospective description of fire behavior on the two burned watersheds.


Postfire Mortality of Ponderosa Pine and Douglas-fir

Postfire Mortality of Ponderosa Pine and Douglas-fir
Author: James F. Fowler
Publisher:
Total Pages: 32
Release: 2004
Genre: Douglas fir
ISBN:

Download Postfire Mortality of Ponderosa Pine and Douglas-fir Book in PDF, ePub and Kindle

This review focused on the primary literature that described, modeled, or predicted the probability of postfire mortality in ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii). The methods and measurements that were used to predict postfire tree death tended to fall into two general categories: those focusing on measuring important aspects of fire behavior, the indirect but ultimate cause of mortality; and those focusing on tissue damage due to fire, the direct effect of fire on plant organs. Of the methods reviewed in this paper, crown scorch volume was the most effective, easiest to use, and most popular measurement in predicting postfire mortality in both conifer species. In addition to this direct measure of foliage damage, several studies showed the importance and utility of adding a measurement of stem (bole) damage. There is no clear method of choice for this, but direct assessment of cambium condition near the tree base is widely used in Douglas-fir. Only two ponderosa pine studies directly measured fine root biomass changes due to fire, but they did not use these measurements to predict postfire mortality. Indirect measures of fire behavior such as ground char classes may be the most practical choice for measuring root damage. This review did not find clear postfire survivability differences between the two species. The literature also does not show a consistent use of terminology; we propose a standard set of terms and their definitions.


Mitigating Old Tree Mortality in Long-Unburned, Fire-Dependent Forests

Mitigating Old Tree Mortality in Long-Unburned, Fire-Dependent Forests
Author: Sharon M. Hood
Publisher: CreateSpace
Total Pages: 78
Release: 2012-10
Genre: Nature
ISBN: 9781480173965

Download Mitigating Old Tree Mortality in Long-Unburned, Fire-Dependent Forests Book in PDF, ePub and Kindle

Historically, many forested ecosystems in the United States burned frequently, both from lightning ignited fires and from Native American burning. Frequent fire maintained low fuel loadings and shaped forests composed of tree species adapted to survive low-intensity frequent fire. In the early 1900s, the United States government initiated a program to suppress all fires, both natural and anthropogenic. Many unintended consequences have resulted from over a century of fire suppression, such as increased tree densities and fuel, increased stress on older trees from competition, and greater risk of bark beetle attacks. These consequences are especially apparent in forests that historically burned frequently and have thus missed many fire cycles. Maintaining old trees and perpetuating large-diameter trees is an increasing concern. Stands of old trees that were historically common across vast landscapes in the United States are now relatively rare on the landscape because of harvesting (Noss and others 1995). Though logging is no longer the principal threat to most old-growth forests, they now face other risks (Vosick and others 2007). Prescribed fire has become a major tool for restoring fire-dependent ecosystem health and sustainability throughout the United States and use will likely increase in the future. However, increased mortality of large-diameter and old trees following fire has been reported in many areas around the country, and there is increased concern about maintaining these on the landscape (Kolb and others 2007; Varner and others 2005). As early as 1960, Ferguson and others (1960) reported high longleaf pine mortality after a low-intensity prescribed burn consumed the majority of heavy duff accumulations around the base of the trees. Mortality of pre-settlement ponderosa pines in prescribed burn areas in Grand Canyon National Park was higher than in control plots (Kaufmann and Covington 2001). After beginning a forest restoration program that reintroduced fire by prescribed burning at Crater Lake National Park, excessive post-fire mortality of larger ponderosa pine was observed in the burn areas, and early season burns had an even higher mortality than late season burns (Swezy and Agee 1991). Both Swezy and Agee (1991) and McHugh and Kolb (2003) reported a U-shaped mortality distribution for ponderosa pine following wildfires, with smaller- and larger-diameter trees having higher mortality than mid-diameter trees. Forest managers around the country have expressed concerns about large-diameter and old tree mortality when prescribed burning in long-unburned forests. The synthesis herein suggests recommendations for maintaining and perpetuating old trees in fire-dependent ecosystems. It expands on efforts funded by the Joint Fire Science Program (JFSP) to define the issues surrounding burning in fire excluded forests of the United States that are adapted to survive frequent fire. When the JFSP initially funded this synthesis, two JFSP projects were examining the effect of raking on reducing old ponderosa and Jeffrey pine (subsequently published in Fowler and others 2010; Hood and others 2007a). Another JFSP project examined the effect of prescribed burning under different duff moisture conditions on long-unburned old longleaf pine mortality (Varner and others 2007). Two other syntheses were also recently published on this subject: Perpetuating old ponderosa pine (Kolb and others 2007) and The conservation and restoration of old growth in frequent-fire forests of the American West (Egan 2007). The scope of the synthesis herein focuses only on limiting over story tree mortality in species adapted to survive frequent fire; therefore, the implications of fire suppression and fuel treatments on other ecosystem components are not discussed.