Effect Of Prestress On The Damping Of Concrete Effect Of Grouting On The Fatique Strength Of Posttensioned Concrete Beams PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Effect Of Prestress On The Damping Of Concrete Effect Of Grouting On The Fatique Strength Of Posttensioned Concrete Beams PDF full book. Access full book title Effect Of Prestress On The Damping Of Concrete Effect Of Grouting On The Fatique Strength Of Posttensioned Concrete Beams.

Damping Characteristics of Reinforced and Prestressed Normal- and High-strength Concrete Beams

Damping Characteristics of Reinforced and Prestressed Normal- and High-strength Concrete Beams
Author: Angela Salzmann
Publisher:
Total Pages:
Release: 2003
Genre: Concrete beams
ISBN:

Download Damping Characteristics of Reinforced and Prestressed Normal- and High-strength Concrete Beams Book in PDF, ePub and Kindle

Abstract: In the last few decades there has been a significant increase in the design strength and performance of different building materials. In particular, new methods, materials and admixtures for the production of concrete have allowed for strengths as high as 100 MPa to be readily available. In addition, the standard manufactured yield strength of reinforcing steel in Australia has increased from 400 MPa to 500 MPa. -- A perceived design advantage of higher-strength materials is that structural elements can have longer spans and be more slender than previously possible. An emerging problem with slender concrete members is that they can be more vulnerable to loading induced vibration. The damping capacity is an inherent fundamental quantity of all structural concrete members that affects their vibrational response. It is defined as the rate at which a structural member can dissipate the vibrational energy imparted to it. -- Generally damping capacity measurements, to indicate the integrity of structural members, are taken once the structure is in service. This type of non-destructive testing has been the subject of much research. The published non-destructive testing research on damping capacity is conflicting and a unified method to describe the effect of damage on damping capacity has not yet been proposed. -- Significantly, there is not one method in the published literature or national design codes, including the Australian Standard AS 3600-2001, available to predict the damping capacity of concrete beam members at the design stage. Further, little research has implemented full-scale testing with a view to developing damping capacity design equations, which is the primary focus of this thesis. -- To examine the full-range damping behaviour of concrete beams, two categories of testing were proposed. The categories are the 'untested' and 'tested' beam states. These beam states have not been separately investigated in previous work and are considered a major shortcoming of previous research on the damping behaviour of concrete beams. -- An extensive experimental programme was undertaken to obtain residual deflection and damping capacity data for thirty-one reinforced and ten prestressed concrete beams. The concrete beams had compressive strengths ranging between 23.1 MPa and 90.7 MPa, reinforcement with yield strengths of 400 MPa or 500 MPa, and tensile reinforcement ratios between 0.76% and 2.90%. The full- and half-scale beams tested had lengths of 6.0 m and 2.4 m, respectively. The testing regime consisted of a series of on-off load increments, increasing until failure, designed to induce residual deflections with increasing amounts of internal damage at which damping capacity (logarithmic decrement) was measured. -- The inconsistencies that were found between the experimental damping capacity of the beams and previous research prompted an initial investigation into the data obtained. It was found that the discrepancies were due to the various interpretations of the method used to extract damping capacity from the free-vibration decay curve. Therefore, a logarithmic decrement calculation method was proposed to ensure consistency and accuracy of the extracted damping capacity data to be used in the subsequent analytical research phase. -- The experimental test data confirmed that the 'untested' damping capacity of reinforced concrete beams is dependent upon the beam reinforcement ratio and distribution. This quantity was termed the total longitudinal reinforcement distribution. For the prestressed concrete beams, the 'untested' damping capacity was shown to be proportional to the product of the prestressing force and prestressing eccentricity. Separate 'untested' damping capacity equations for reinforced and prestressed concrete beams were developed to reflect these quantities. -- To account for the variation in damping capacity due to damage in 'tested' beams, a residual deflection mechanism was utilised. The proposed residual deflection mechanism estimates the magnitude of permanent deformation in the beam and attempts to overcome traditional difficulties in calculating the damping capacity during low loading levels. Residual deflection equations, based on the instantaneous deflection data for the current experimental programme, were proposed for both the reinforced and prestressed concrete beams, which in turn were utilised with the proposed 'untested' damping equation to calculate the total damping capacity. -- The proposed 'untested' damping, residual deflection and total damping capacity equations were compared to published test data and an additional series of test beams. These verification investigations have shown that the proposed equations are reliable and applicable for a range of beam designs, test setups, constituent materials and loading regimes.


Fatigue of Reinforced Concrete

Fatigue of Reinforced Concrete
Author: G. P. Mallett
Publisher: Stationery Office Books (TSO)
Total Pages: 180
Release: 1991
Genre: Business & Economics
ISBN:

Download Fatigue of Reinforced Concrete Book in PDF, ePub and Kindle

Over the past 20 years, the Transport and Road Research Laboratory has carried out a co-ordinated programme of fatigue testing, including work on the fatigue performance of reinforced and pre-stressed concrete beams. The research has led to a better understanding of the fatigue behaviour of plain concrete, the various types of reinforcing bars in air and concrete, continuous welded, lapped and coupled bars, and the effects of corrosion. The work of TRRL and many other organizations is reviewed and a summary of current design rules with recommendations for assessing the fatigue life of new structures in service is given.


Fatigue of Prestressed Concrete Members

Fatigue of Prestressed Concrete Members
Author: Vejubhai Gulababhai Patel
Publisher:
Total Pages: 122
Release: 1961
Genre: Fatigue testing machines
ISBN:

Download Fatigue of Prestressed Concrete Members Book in PDF, ePub and Kindle