Effect Of 3d Stress States At Crack Front On Deformation Fracture And Fatigue Phenomena PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Effect Of 3d Stress States At Crack Front On Deformation Fracture And Fatigue Phenomena PDF full book. Access full book title Effect Of 3d Stress States At Crack Front On Deformation Fracture And Fatigue Phenomena.

Effect of 3D Stress States at Crack Front on Deformation, Fracture and Fatigue Phenomena

Effect of 3D Stress States at Crack Front on Deformation, Fracture and Fatigue Phenomena
Author: Zhuang He
Publisher:
Total Pages: 165
Release: 2015
Genre: Elastic plates and shells
ISBN:

Download Effect of 3D Stress States at Crack Front on Deformation, Fracture and Fatigue Phenomena Book in PDF, ePub and Kindle

Theoretical, numerical and experimental studies involving elastic plate components, weakened by through-the-thickness cracks and subjected to loading parallel to the plane of the plate, are often based on plane stress or plane strain simplifications. These simplifications essentially reduce the dimensionality of the physical three-dimensional problem and enable the achievement of effective analytical and numerical solutions for many important practical problems. The influence of various three-dimensional effects, such as the variation of stresses across the plate thickness, effects of the three-dimensional corner (vertex) singularities and coupling of fracture modes II and III, on the deformation and stresses near the crack front are at present largely ignored or viewed as negligible for all practical purposes. As a result of this view, the outcomes of experimental studies and fracture tests are also commonly analysed within the framework of the plane theories of elasticity. Nevertheless, a number of theoretical and experimental studies over the past two decades have demonstrated that the predictions made within these theories can be unsatisfactory and the effect of three-dimensional stress states at the crack front on deformation, fatigue and fracture of plate components can be significant. This thesis aims to elucidate the role of three-dimensional stress states in the deformation, fracture and fatigue phenomena further. The main outcomes of this thesis are: (1) the development and validation of a simplified method for the evaluation of the fatigue crack front shapes and their effect on the steady-state fatigue crack growth rates in plate components; (2) investigation of the effect of three-dimensional corner (vertex) singularities on the stress intensities and displacement field near the crack front; and (3) development and validation of a new experimental approach for the evaluation of mode I and mode II stress intensity factors from the measurement of the out-of-plane displacements in the near crack tip region, which are affected by three-dimensional effects, and, in particular, by the 3D corner (vertex) singularity. This new research is important in many engineering contexts. For example, the new theoretical model, which takes into account the actual shape of the crack front, can be utilised in advanced fatigue life calculations, as well as in failure investigations. The latter is possible as the shape of the fatigue crack front can now be related to the parameters of fatigue loading. The new experimental approach developed in this thesis can be useful in fracture characterisation of thick plate components with through-cracks. This approach specifically addresses the situation when the Kdominance zone, or William's solution convergence domain, are relatively small. In this case, the data extraction region can be affected by the three-dimensional stress states leading to significant errors in the evaluation of the stress intensity factors when using traditional approaches. This thesis is presented in the form of a compendium of published papers that are the summation of the research undertaken by the author. The five articles which form the main body of the thesis are united by a common theme, which is the investigation of three-dimensional effects near the crack front on stresses and displacements, fracture and fatigue phenomena. Two appendices are also included; they represent a compilation of the candidate's publications related to the main topic of the thesis.


Micromechanisms of Fracture and Fatigue

Micromechanisms of Fracture and Fatigue
Author: Jaroslav Pokluda
Publisher: Springer Science & Business Media
Total Pages: 296
Release: 2010-05-27
Genre: Technology & Engineering
ISBN: 1849962669

Download Micromechanisms of Fracture and Fatigue Book in PDF, ePub and Kindle

Micromechanisms of Fracture and Fatigue forms the culmination of 20 years of research in the field of fatigue and fracture. It discusses a range of topics and comments on the state of the art for each. The first part is devoted to models of deformation and fracture of perfect crystals. Using various atomistic methods, the theoretical strength of solids under simple and complex loading is calculated for a wide range of elements and compounds, and compared with experimental data. The connection between the onset of local plasticity in nanoindentation tests and the ideal shear strength is analysed using a multi-scale approach. Moreover, the nature of intrinsic brittleness or ductility of perfect crystal lattices is demonstrated by the coupling of atomistic and mesoscopic approaches, and compared with brittle/ductile behaviour of engineering materials. The second part addresses extrinsic sources of fracture toughness of engineering materials, related to their microstructure and microstructurally-induced crack tortuosity. Micromechanisms of ductile fracture are also described, in relation to the fracture strain of materials. Results of multilevel modelling, including statistical aspects of microstructure, are used to explain remarkable phenomena discovered in experiments. In the third part of the book, basic micromechanisms of fatigue cracks propagation under uniaxial and multiaxial loading are discussed on the basis of the unified mesoscopic model of crack tip shielding and closure, taking both microstructure and statistical effects into account. Applications to failure analysis are also outlined, and an attempt is made to distinguish intrinsic and extrinsic sources of materials resistance to fracture. Micromechanisms of Fracture and Fatigue provides scientists, researchers and postgraduate students with not only a deep insight into basic micromechanisms of fracture behaviour of materials, but also a number of engineering applications.


Mechanics of Fatigue Crack Closure

Mechanics of Fatigue Crack Closure
Author: Wolf Elber
Publisher: ASTM International
Total Pages: 671
Release: 1988
Genre: Fracture mechanics
ISBN: 0803109962

Download Mechanics of Fatigue Crack Closure Book in PDF, ePub and Kindle


Fracture, Fatigue, Failure and Damage Evolution , Volume 3

Fracture, Fatigue, Failure and Damage Evolution , Volume 3
Author: Shuman Xia
Publisher: Springer Nature
Total Pages: 102
Release: 2021-03-26
Genre: Technology & Engineering
ISBN: 3030609596

Download Fracture, Fatigue, Failure and Damage Evolution , Volume 3 Book in PDF, ePub and Kindle

​Fracture, Fatigue, Failure and Damage Evolution, Volume 3 of the Proceedings of the 2020 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the third volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Novel Experimental Methods Extreme Environments Interfacial Fracture Integration of Models & Experiments Mechanics of Energy & Energetic Materials Integration of Models & Experiments In Situ Techniques for Fatigue & Fracture Microscale & Microstructural Effects on Mechanical Behavior


Dynamic Fracture Mechanics

Dynamic Fracture Mechanics
Author: Arun Shukla
Publisher: World Scientific
Total Pages: 374
Release: 2006
Genre: Technology & Engineering
ISBN: 9812773320

Download Dynamic Fracture Mechanics Book in PDF, ePub and Kindle

Covering a wide variety of topics in dynamic fracture mechanics, this volume presents state-of-the-art experimental techniques and theoretical analysis on dynamic fracture in standard and exotic materials. Written by world renowned researchers, this valuable compendium contains eleven chapters on crack initiation, crack propagation, crack arrest, crack-stress wave interactions, and experimental, analytical and numerical methods in dynamic fracture mechanics. Contents: Modeling Dynamic Fracture Using Large-Scale Atomistic Simulations (H-J Gao & M J Buehler); Dynamic Crack Initiation Toughness (D Rittel); The Dynamics of Rapidly Moving Tensile Cracks in Brittle Amorphous Material (J Fineberg); Optical Methods for Dynamic Fracture Mechanics (H V Tippur); On the Use of Strain Gages in Dynamic Fracture (V Parameswaran & A Shukla); Dynamic and Crack Arrest Fracture Toughness (R E Link & R Chona); Dynamic Fracture in Graded Materials (A Shukla & N Jain); Dynamic Fracture Initiation Toughness at Elevated Temperatures with Application to the New Generation of Titanium Aluminides Alloys (M Shazly et al.); Dynamic Fracture of Nanocomposite Materials (A Shukla et al.). Readership: Researchers, practitioners, and graduate students in fracture mechanics and materials science.


Crack Paths

Crack Paths
Author: L. P. Pook
Publisher: Witpress
Total Pages: 176
Release: 2002
Genre: Medical
ISBN:

Download Crack Paths Book in PDF, ePub and Kindle

Many engineering structures and components contain cracks or crack-like flaws and it is widely recognized that crack growth must be considered both in the design and analysis of failures. The complete solution of a crack growth problem therefore includes determination of the crack path. At present the factors controlling the path taken by a propagating crack are not completely understood. In general crack paths are difficult to predict, while in practice their development in structures is often determined by large-scale structural tests. In introductory texts on fracture mechanics it is usually assumed that the crack path is known, either from theoretical considerations, or from the results of laboratory tests.


Fracture and Fatigue

Fracture and Fatigue
Author: J. C. Radon
Publisher: Elsevier
Total Pages: 499
Release: 2017-01-31
Genre: Technology & Engineering
ISBN: 1483149714

Download Fracture and Fatigue Book in PDF, ePub and Kindle

Fracture and Fatigue: Elasto-Plasticity, Thin Sheet and Micromechanisms Problems covers the proceedings of the Third Colloquium on Fracture. The book discusses the development and applications of fracture mechanics. The contents of the text are organized according to the areas of concerns. The first part deals with elasto-plastic fracture mechanics, which includes topics such as fracture mechanics in the elastic-plastic regime and sizing of the geometry dependence and significance of maximum load toughness values. Part II covers the micromechanisms of fracture, which includes the aspects of crack growth under monotonic loading and the effect of secondary hardening on the fracture toughness of a bainitic microstructure. Part III concerns itself with thin sheet fracture mechanics, which includes R-curves evaluation for center-cracked panels and use of the R-curve for design with contained yield. The book will be of great interest to researchers and professionals whose work involves fracture mechanics.


Fatigue of Structures and Materials

Fatigue of Structures and Materials
Author: J. Schijve
Publisher: Springer Science & Business Media
Total Pages: 627
Release: 2008-12-16
Genre: Science
ISBN: 1402068085

Download Fatigue of Structures and Materials Book in PDF, ePub and Kindle

Fatigue of structures and materials covers a wide scope of different topics. The purpose of the present book is to explain these topics, to indicate how they can be analyzed, and how this can contribute to the designing of fatigue resistant structures and to prevent structural fatigue problems in service. Chapter 1 gives a general survey of the topic with brief comments on the signi?cance of the aspects involved. This serves as a kind of a program for the following chapters. The central issues in this book are predictions of fatigue properties and designing against fatigue. These objectives cannot be realized without a physical and mechanical understanding of all relevant conditions. In Chapter 2 the book starts with basic concepts of what happens in the material of a structure under cyclic loads. It illustrates the large number of variables which can affect fatigue properties and it provides the essential background knowledge for subsequent chapters. Different subjects are presented in the following main parts: • Basic chapters on fatigue properties and predictions (Chapters 2–8) • Load spectra and fatigue under variable-amplitude loading (Chapters 9–11) • Fatigue tests and scatter (Chapters 12 and 13) • Special fatigue conditions (Chapters 14–17) • Fatigue of joints and structures (Chapters 18–20) • Fiber-metal laminates (Chapter 21) Each chapter presents a discussion of a speci?c subject.


Investigation of Cohesive Zone Models for Three-Dimensional Fatigue Crack Propagation in Engineering Metals

Investigation of Cohesive Zone Models for Three-Dimensional Fatigue Crack Propagation in Engineering Metals
Author: Xiao Li
Publisher: Cuvillier Verlag
Total Pages: 140
Release: 2017-09-12
Genre: Technology & Engineering
ISBN: 373698619X

Download Investigation of Cohesive Zone Models for Three-Dimensional Fatigue Crack Propagation in Engineering Metals Book in PDF, ePub and Kindle

With the development of technology, damage tolerance design becomes compulsory and fatigue crack propagation life is a necessary design case, e.g. in aerospace industry. For low cycle fatigue problems, the failure process is generally ductile which cannot be described by the known Paris' law properly. Predicting elastoplastic fatigue crack growth life remains one of the most challenging problems in fracture mechanics. Cohesive zone modeling provides an alternative way to predict crack growth in ductile materials under elastoplastic loading conditions. The investigations of constraint effects have confirmed that cracking depends on the applied load intensity and the load configuration. Present dissertation concerns the constraint effect on the cohesive zone model and the application of the cohesive zone model for three-dimensional low cycle fatigue crack growth predictions. - A new stress-triaxiality-dependent cohesive zone model is proposed to describe 3D elastoplastic fracture process. - A new cyclic cohesive zone model is proposed to describe the fatigue crack growth with both low and high growth rates. - A new stress-triaxiality-dependent cyclic cohesive zone model is proposed and the stress-state affects both the cohesive law and the damage evolution equation.